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ABSTRACT

Title of Dissertation: Analytic Properties and Cremona Approximation
of Transfer Maps for Hamiltonian Systems

Dan Tyler Abell, Doctor of Philosophy, 1995
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Professor
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The motion of a dynamical system may be approximated as a sequence of discrete steps
in time described by transfer maps. In the field of accelerator physics, Taylor series maps
constitute a special, heavily-used class of such maps, which, despite their wide use, have poorly
understood, or little appreciated, convergence properties. In Part I we show first how one
may expect a (very general) transfer map to be analytic within some, perhaps quite limited,
region of phase space. We then show that the underlying singularity structure of the original
map—as determined by the dynamical system itself—governs the domain of convergence of a
given Taylor series map. We conclude Part I by using the quartic anharmonic oscillator as an
example to illustrate not only the complicated, rich, and very subtle behavior of such domains
of convergence, but also the care and understanding required when drawing conclusions about
the applicability of Taylor maps.

Following a Hamiltonian flow for a finite interval of time produces a symplectic map. In
Part II we describe a procedure for converting a truncated Taylor series approximation for a
symplectic map into a polynomial map that is exactly symplectic—i.e., a Cremona map—in
such a way that the Cremona map agrees with the original Taylor map through terms of
any desired order. We then introduce the concept of sensitivity vectors and show how that
concept allows one to characterize optimal Cremona symplectifications. We also give explicit
constructions for optimal Cremona symplectifications in two- and four- and six-dimensional
phase spaces. At the end, we apply these methods to some maps of physical interest. We
expect that Cremona maps may be useful for studying the long-term behavior of particles
circulating in storage rings.
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Part I. Analytic Properties of Transfer Maps






1. INTRODUCTION I

The study of a physical phenomenon often involves the construction and subsequent in-
vestigation of a suitable mathematical model in the form of a dynamical system; and one of
the most powerful tools for the study of such systems is the concept of a transfer map. In
many dynamical systems, for example, the questions of primary interest focus on such global
issues as the stability of a motion and the presence (and stability) of fixed points. Upon
using transfer maps to study such aspects, we in effect translate questions about the time
evolution of a system into questions about the motion of points under the action of a map on
the corresponding phase space. In so doing, we hide the details of the motion and emphasize
its global structure. Thus do the questions one might ask of a map subsume many of the
questions one might ask of the underlying dynamical system.

In the process of analyzing a dynamical system used to model some physical phenomenon,
one typically discovers that the desired map cannot be extracted and written down in a closed
or finite form. Hence, even though maps come in many flavors, and may be cooked according
to different recipes, almost all start with the same basic ingredient: a Taylor series map,
which represents the state of a dynamical system after some finite interval as a collection of
Taylor series expanded in terms of the initial conditions. In spite of the wide application of
Taylor series maps, little is known about their analytic and convergence properties, and that
little often goes unappreciated.

Here in Part I of this thesis we shall explore some of these analytic and convergence
properties, and we shall address in particular the question “What limits the domain of validity
of a Taylor series map—and how?” In §2 we describe the concept of a transfer map and
quote some fundamental theorems that justify not only the existence of transfer maps, but
also their advantages. Then in §3 we describe the Taylor series representation for transfer
maps. Following that, in §4 we summarize some of the basic theorems from the theory of
functions of several complex variables. In §5 we examine how one may by extrapolation form
a conjecture about the domain of a given Taylor map based solely on a knowledge of a finite
number of coefficients. All this material forms the core of our understanding of what limits
the domain of convergence of Taylor series maps. Of course it is in principle well known to
mathematicians, but it has not previously been applied in the field of accelerator physics, even
though accelerator physicists make extensive use of Taylor series maps. Then in §6 we explore
a particular dynamical system—an anharmonic oscillator. There we determine the analytic
solution and describe the singularities of the anharmonic oscillator in the complex planes of the
initial conditions. We use this information together with the theorems from several complex
variable theory to determine the domain of convergence of a Taylor series map for three
different time steps. These results, while relatively straightforward, are new and illustrate
the care and understanding required when drawing conclusions about the applicability of
Taylor maps. In §7 we complete Part I with a summary.



2. THE CONCEPT OF A TRANSFER MAP

In the most general terms a transfer map is a function, or mapping, that reveals how
a system changes during a fixed interval of time. Omne starts by giving a mathematical
description of the physical system of interest—or, more precisely, of an idealized image of the
physical system. In particular, one can model a large and very general class of systems by
finite sets of coupled first-order ordinary differential equations (ODEs) having the form

(2.1) z2=f(t,z;c).
Here z = (21,. .., 2m) is a vector describing the state of the system as a point in an abstract
m-dimensional space called the phase space of the system; ¢ = (¢1, .. ., ¢g) is a vector of control

parameters, generally held fixed, whose values affect the global behavior of the system; and
the dot, as usual, denotes differentiation with respect to the time, or some time-like variable,
t. Using this model, one can translate any question about the time evolution of the physical
system into a question about the motion of points in the corresponding phase space.

Doing a simple analysis, we might start from some initial state 2% at time ¢’ and describe
the time evolution of the system as a path traced in phase space by the moving point z(t).
On the other hand, we often wish to know how the system evolves not from a single initial
condition, but rather from a range of initial conditions. We envision, for example, wanting to
know the behavior of a distribution of particles, or wanting to know the sensitivity of a given
trajectory with respect to its initial state. To answer such questions, we can imagine using
a small set of initial conditions as markers and then taking snapshots of the phase space at
a sequence of equally spaced times. By observing our markers, we can determine how the
motion transforms the phase space.

Boiled down to its essence, a transfer map describes how a system changes between suc-
cessive snapshots. Suppose z* represents the initial state of our dynamical system at time #°,
and that we wish to know the final state z/ at some later time ¢/. We may then express the
transformation from the phase space at time ¢’ to the phase space at time ¢/ as

(2.2a) o = M

Here (2.2a) describes the final state as the result of the transfer map Mt =t acting on the
initial state. In other words, M!'*' maps any given point in phase space to a new point in
phase space. If only the time interval 7 = tf — ¢’ is relevant, then one may write (2.2a) in

the simpler form
(2.2b) 2l = M7

While this form certainly applies to autonomous (i.e., time-independent) systems, the reader
should observe that it applies also to systems for which the right-hand side f of (2.1) is
periodic in ¢ with period 7.

The form given in (2.2b), if it applies, is especially useful because the map M7 contains
all of the dynamical information about the system. In the case of periodic systems M” may
also depend on where t* occurs within one period, but it remains true that M7 contains
all of the dynamical information. For example, suppose the map has a fixed point z°, so
that 20 = M720. The existence of such a fixed point implies that the underlying dynamical
system has a periodic orbit. One can then easily ascertain the stability of the system in
the neighborhood of the periodic orbit by examining the linear part of the map M7. In
particular, one may represent the linear part of the map about the point 2° by the Jacobian
matriz M with elements given by

0z

Mab(zo) = W .
b 120
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The eigenvalues of M reveal the nature of the system in the neighborhood of the periodic
orbit [30]. As another example, one may follow, or “track”, the motion of the system simply
by iterating the map.

We now ask the natural question: “Under what circumstances can we express a solution
to (2.1) in the form given in (2.2a)?” The process described above—of extracting the essence
of a physical system and exhibiting it in the form shown in (2.1)—works so well that we
often forget the extraordinary intellectual difficulties that hindered its conception. Since the
remarkable birth of classical physics some three-hundred years ago, mathematicians have
learned and then taught us a great deal about differential equations. For our purposes
here, their most important teachings comprise the famous existence and uniqueness theorems
concerning solutions to (2.1). We may summarize these as (e.g. see Brauer and Nohel [13])

Theorem 2.1. Consider any set of m first-order ordinary differential equations given in the
form of (2.1) with c held fized. Assume that f and its partial derivatives 9f;/0z; all exist and
are continuous and bounded on some domain D in the (m + 1)-dimensional space of (t,z).
Then there exists a unique solution or integral curve of (2.1) passing through each point of
D. In other words, given any point (t',2%) in D, there exists a unique

(2.3) 2(t) = ¢(t;t', 2" )
satisfying (2.1) and having the property
(2.4) 2(tY) = p(t' 1%, 2% ) = 2.

The solution (2.3) can be extended both forward and backward in time as long as (t,z) =
(t,¢(t)) remains in D. Furthermore, this solution is continuous in the variables t, t', and
241

On writing the equations of motion (2.1) in terms of a time derivative, we appear to give
special attention to the time (or the time-like variable). Expressing the solution (2.3) as z(t)
further emphasizes the role time plays. But Theorem 2.1 informs us that we may equally well
view the solution (2.3) as a function of the initial conditions. When we adopt this point of
view, we see that Theorem 2.1 guarantees us that any system described by (2.1) and satisfying
the appropriate conditions has a transfer map J\/ltf‘_tl; and, furthermore, that transfer map
is uniquely defined.

With the existence of transfer maps established, we now address two additional questions:
“How do the control parameters affect the map?” and “What can we say about the map if
f is analytic?”

In any physical system that we model, there always exist parameters whose values we must
measure. We then include these parameters by making them part of the vector of control
parameters ¢ in (2.1). But since errors affect all measurements, we would like some assurance
that small differences between the measured and true values of the c¢; will not prove too
harmful. This is the subject of (e.g. see [13])

Theorem 2.2. Suppose the partial derivatives of f with respect to the control parameters,
0fi/0c;, all exist and are continuous and bounded on some domain C of the manifold defined
by the set of all possible control vectors c¢. Then at all points ¢ € C the solution (2.3) will be
continuous in each of the parameters c;.

In the language of transfer maps, Theorem 2.2 assures us that sufficiently small variations in
¢ produce correspondingly small changes in the transfer map . Therefore, if our model contains
an accurate representation of the system, then we stand a good chance of making successful
predictions. The mathematician, however, offers little insight concerning the construction of

1Other versions of the existence-uniqueness theorem (e.g. see Petrovski [71]) place less stringent require-
ments on the function f, but this simpler rendition meets our needs.



6 D. T. ABELL

good models, so we must always look to experiment for information about the quality of our
models.

For a host of reasons, including computational convenience, researchers often use analytic
functions for the right-hand side of (2.1). Since the class of analytic functions has very
special properties, one might expect the corresponding solution (2.3) to have similarly special
properties. The following theorem addresses just this point.

Theorem 2.3 (Poincaré). Suppose f on the right-hand side of (2.1) denotes a set of analytic
functions on some domain G of the manifold defined by the variables t, z, and c. Then the
solution (2.3) will be analytic in the variables t, t', ¢, and ¢ as long as (t, z(t), c) remains in

g [71].

This theorem derives its value from the fundamental fact that one may express any analytic
function as a convergent power series. (We shall say more about this later.) A common
application of Theorem 2.3 is to the computation of perturbative power series expansions in
terms of some control parameter c¢; [62]. In this thesis we shall take advantage of Theorem 2.3
to express the final conditions 2/ as a power series in the initial conditions z°.

We close this section with the following comment: Satisfying the analyticity requirements
of Theorem 2.3 often (at least in physics) proves less onerous than it appears. For example,
imagine that we wish to model the motion of a charged particle in a system of static electric
and magnetic fields. It can be shown that even though the charges and currents that generate
the electric and magnetic fields may not be analytic distributions, the fields themselves are
analytic in any region free of sources [42]. This remarkable fact derives from the mathematical
properties of Maxwell’s equations and allows us to apply Theorem 2.3 to many models of
charged-particle dynamics.



3. THE TAYLOR SERIES REPRESENTATION

We now confine our attention to systems covered by Theorem 2.3. In other words, we
consider only those systems described by an equation of motion having the form given in
(2.1) for which the right-hand side, f(t, z;¢), is analytic on some domain of all its variables.
With these restrictions, as we shall see in §4, one may write each component of the final state
as (on some domain) a convergent power series expanded in terms of the initial conditions:

(3.1a)

Z’r{l = T’m(zia R Z;Ln)a
where the T; denote a collection of Taylor series, each expanded about the same point z°
in phase space. and written in terms of the initial conditions z’. In series form, about the
origin, (3.1a) becomes

(31b) Z({ = Ka + ZRab Zz + ZTabc z;)zz =+ Z Uabcd Zzzzzé + .. ,
b be bed
where the indices a,b, ..., run from from 1 to m, the dimension of the phase space. The

coefficients K, denote the constant terms, while the R,, define the (first-order) transfer
matrix, and the Type, Ugped, €tc., define generalized higher-order transfer matrices. We call
(3.1) a Taylor series map, or Taylor map, because it expresses in Taylor series form exactly
the idea contained in (2.2): a Taylor map acts on an initial point in phase space and returns
a final point in phase space.

The reader should note that the Taylor series coefficients in (3.1) depend not only on the
the various control parameters ¢;, but also on the initial and final times ¢* and t! (or, for
autonomous systems, on the time interval 7 = ¢/ —#*). Furthermore, the coefficients may not
be independent. In Hamiltonian systems, for example, the coefficients are constrained by the
symplectic condition [28, 30], which we shall discuss in §8.

The Taylor series representation of a map, as given in (3.1), has two principal virtues:
familiarity and computational speed. After calculating a suitable number of coefficients (the
hard part), we can (given sufficient attention to efficient algorithms) compute zf from z°
with great speed. Furthermore, we can apply the Taylor series map to any number of initial
conditions—a valuable feature. We may, for example, want a very finely grained image of
the phase-space transformation effected by some map. We can obtain this information by
applying the corresponding Taylor series map once to a large number of closely spaced initial
conditions. On the other hand, we might want to track just a few initial conditions through
many cycles of a periodic system. In this example we can choose to represent one cycle either
as a single map or as the composition of several maps. Whether we use one or several maps
does not matter: we still recycle the code. Thus in both of these examples we can use the
same map or maps repeatedly.

The Taylor series representation does, however, have a significant drawback: for most
systems the series (3.1b) does not terminate. This difficulty has a number of important
consequences. To begin with, a truncated Taylor series map may differ significantly from the
original map. For example, even if the original map corresponds to a conservative Hamiltonian
system, the truncated Taylor series map generally violates both the symplectic condition and
conservation of energy. Moreover, carrying the series to higher order can only alleviate—but
never eliminate—the problem. For a system in an m-dimensional phase space, the order [
terms in the Taylor series map require a total of

m(H—m—l) (4 m=1)

l " M m = 1)!



8 D. T. ABELL

coefficients. The use of a high-order Taylor series map therefore requires the computation
and storage of a large number of coefficients. Furthermore, and most important, the series
may not converge. We shall focus our attention on illuminating the principal features of the
domain of convergence: what does it look like, and what factors affect its size and shape?
As a simple example of a Taylor series map, consider the dynamical system described by
the Hamiltonian
(3.2) Hyuar = %(p2 +4¢%) - iq“,
where ¢ is the codrdinate, and p is its conjugate momentum. We shall discuss this system
in considerable detail in §6; for now, however, simply note that this Hamiltonian describes a
particle of unit mass in the potential of an anharmonic oscillator—a harmonic oscillator with
a quartic “correction”. As Hgyuqr is polynomial in ¢ and p, the corresponding equations of
motion,

. 8Hquar o

i= =5, = P

. 8H uar

p=——p = —a+d,
q

have everywhere analytic right-hand sides, and Theorem 2.3 therefore applies. Using the
techniques of Lie algebra [28, 87] or automatic differentiation [11, 12, 72], we can compute
the coefficients of the Taylor series map to very high order. Here we present the first few
terms of the map expanded about the origin, z = (¢, p) = (0,0), using a time step 7 = T7:

¢ = 0.7539¢ + 0.6570p' + 1.765 ¢ — 1.626¢° pi +1.603 ' pi> — 1.768pi" + - - - ,
p/ = —0.6570¢" + 0.7539 pi + 2.283¢"° + 2.091 ¢°° pi + 2.052 ¢’ pi” + 1.603 pi° + - - - .

(See §6.5.) The coefficients of the linear terms turn out to be cos(r) and +sin(r) and arise
from the quadratic terms in the Hamiltonian (3.2). The presence of the quartic term in Hyyqr
generates the infinite series of higher order terms.

(3.3)



4. COMPLEX VARIABLE THEORY

4.1. The Theory of Functions of a Single Complex Variable

As a prelude to our study of the theory of functions of several complex variables, we briefly
recall a couple of the salient definitions and results from the theory of functions of a single
complex variable. We shall then recognize the theorems for functions in several variables as
natural extensions of more well-known results.

By a domain we shall mean a non-empty open connected set in the complex plane. By
connected we mean that one may join any two points using a curve that lies entirely within
the domain. We call such a domain simply connected if any closed curve in the domain can
be deformed to a point without the curve passing out of the domain. In other words, a
simply connected domain contains no interior boundaries, or “holes”. A function w = f(z)
is called analytic on a domain D if it possesses a derivative everywhere in D. Then we have
the following two important theorems. (For proofs of these theorems, consult any moderately
complete text on complex analysis, e.g. [4, 15].)

Theorem 4.1 (Cauchy’s Integral Formula). Suppose f(z) is analytic on a simply connected
domain D, and suppose also that T' is a simple closed curve contained in D. Then for any
zg inside I

1 f(z)
4.1 =— ¢ ——dz.
(4.1) f(z0) 21t Jp 2 — 2o :
Theorem 4.2 (Taylor Series). Suppose f(z) is analytic on a domain D containing the point
zo. Define R as the radius of the largest circle which is centered at zy and which has its
interior entirely within D. One may then write f(z) as a power series in z:

o0
(4.2a) F2)=> enlz—20)™

n=0
This sum is the Taylor series for f about the point zy, and it converges absolutely inside the
circle |z — z9| < R. Furthermore, the coefficients ¢, are given by

(4.2b) Cn = %f(n)(zo) _ Lﬁ: ( f(z) dx

2mi z—zo)nt1
where I' has the same properties as in Theorem 4.1.

When we examine functions of several complex variables, we shall learn that Theorems 4.1
and 4.2 possess natural analogues. What will be different, and what we shall pay especial
attention to, is the shape of the domain of convergence. Whereas the natural domain for a
Taylor series in a single complex variable has a circular boundary, the natural domain for a
Taylor series in several complex variables has a much more dynamic shape.

4.2. The Theory of Functions of Several Complex Variables

In this section we describe specifically the theory of functions of two complex variables;
but, as the discerning reader will note, all the results we state have natural generalizations
[52, 79]. The discussion we give here follows that of Kaplan [53, Ch. 9].

Given two complex numbers z; and z;, we define C? as the two-dimensional complex space
of points (z1, 22). The natural metric for C? gives the distance between points (2], 25) and
(21, 23) as

1/2
o ’ 172 ’ 2
d—(|z1—z1 + |25 — 2 ) .

By identifying 2, = xx +iyx, we note that C?2 is equivalent to the four-dimensional Euclidean
space R* having points labeled by (1,91, ¥2,y2) together with the usual metric. Then one
may define a domain in C2? exactly as in the one-dimensional case: a non-empty open con-
nected set in the space C? (or its equivalent R*).
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For functions in C2, a natural domain is the polycylinder, a set of points (21, 22) for which
|21 —a1] <r1  and  |z2 —ag| < ro,

where both r; and ro are positive real numbers, and a; and as are complex. (Said another
way, a polycylinder is the Cartesian product of two circular domains in C*.) The boundary
of such a polycylinder is the set of points (21, 22) satisfying

|21 —a1] =r1 and  |z2 —ag| <o,
together with those points satisfying
|21 —a1] <r;  and  |z2 — ag| = re.

A generalized polycylindrical domain in C? is the set of points (21,22) for which each z;
belongs to D;, where D; is some domain in the complex z; plane.

A function of two complex variables is a function F'(z1, z2) whose arguments z; and z2 each
vary over a complex plane. Such a function is called holomorphic, or analytic, on a domain D
if it is analytic everywhere in D with respect to each of its variables separately. In particular,
F is holomorphic in D if the partial derivatives 9F/0z; and 0F/0z; both exist in D.

For functions in C2, the analogue to Theorem 4.1 is

Theorem 4.3. Suppose F' is holomorphic in the generalized polycylinder D: z1 in Dy, z3 in
Ds. Suppose also that T'y and Ty are piecewise smooth simple closed curves in Dy and Do,
respectively, and that the interiors of I'1 and T's are contained in Dy and Do, respectively.
Then, if 2 lies inside T'1, and 29 lies inside T's,

21722)
4.3 F(2° dz d
( ) (21722 2m 7§1 ﬁz 2'1 — 21 22 — z2) zZ1 az2.

Note the remarkably restrictive constraint this theorem places on holomorphic functions
of two complex variables: the values of F' on the two-dimensional set I'y x I'y determine the
value of F' at any other point in a four-dimensional space. Here we are counting the number
of real dimensions.

In analogy with Theorem 4.2 we also have the following two theorems for functions in C2.

Theorem 4.4. Under the same hypotheses as Theorem 4.3, the function F has partial deriva-
tives of all orders, and they are given by

am+nF(Z Z m' n! Zl 22)
44 7)) 7{ 7{ : e
(4.4 0z 028 2mi)2 Jp, Jr, (21 — 29)mH1 (29 — 2Q)nH1 21 az2

Theorem 4.5. Suppose F(z1, 23) is holomorphic on a domain D containing the point (2{, 29).
Then in a (perhaps small) neighborhood of (29, 23), one may expand F(z1, 22) as a convergent
power series in z1 and 2o

oo

(4.5a) F(z1,22) = Z Cmn(21 = 29)™ (22 — 23)".

m,n=0
This double sum is the Taylor series for F' and has coefficients given by

1 omtnFE
(45b) o, = (21 22 - % % Zi.ng) - - le dZQ.
271'2 r, Jr, (21 — 29)ymA1 (29 — 29)nt

mlnl 027" 0z%

Furthermore, the double sum converges absolutely in any polycylinder |21 —z?| < ry and
|22 — 28| < r9 contained in D.

After thinking about (4.5a), one might suspect that the r1 and ry of Theorem 4.5 must
depend upon one another: as r; increases, the maximum possible value for ro decreases (or
at least never increases). The following theorem supports this conclusion, where now we
specialize to Taylor series expansions taken about the origin (27, 23) = (0,0).
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Theorem 4.6 (Domain of Absolute Convergence). Suppose that for some z1 = a1 # 0 and
29 = ag # 0 the double series
o0
(4.6a) Z Crmn 21" 2
m,n=0
converges for some arrangement of its terms as a simple series.> Then the series converges
absolutely for all points (z1,z2) in the polycylinder

(4.6b) 21| < |la1] =71 and 22| < |az| = 7.

This theorem places certain restrictions on the shape of the domain of absolute convergence
(DAC) for a two-dimensional Taylor series expanded about the origin. In particular, since
only absolute values matter, we may describe the real four-dimensional DAC using a two-
dimensional plot that shows all values of |z1| and |z2| for which the series converges. Such a
plot is called the absolute convergence diagram, and we show a typical example in Figure 4.1.
In addition, we recall that an absolutely convergent series will converge, and will converge to
the same value, for any arrangement as a simple series [76, p. 78].

121

ears

3 B

FIGURE 4.1. Example of an absolute convergence diagram. Theorem 4.6
shows that if a series converges for some point (r1,72), then it converges for
all pairs (21, z2) having moduli (|21], |22|) inside the rectangle defined by the
origin and the point (1, r2).

The last theorem suggests the following recipe for determining the absolute convergence
diagram of the function F(z1,z2) (for Taylor series expansions about the origin). Begin
by holding zy fixed at the value 72€'? and writing f.,(z1) for the resulting function of
the single complex variable z;. Then locate in the z;-plane the singularities of f,, that lie
nearest the origin z; = 0. Figure 4.2(a) shows a possible arrangement for a function whose
only singularities are poles. Now alter the function f,, by varying the phase—but not the
modulus—of z3. As 22 sweeps through a full circle of radius ra, the singularities of f,,
will trace out (possibly quite complicated) closed curves. Figure 4.2(b) illustrates a possible
scenario based on the arrangement shown in Figure 4.2(a). Now measure the distance r;
from the origin of the zi-plane to the nearest point on any of the curves traced out by the
singularities of f,,. Then according to Theorem 4.5, the point (r1,r2) lies on the boundary of

2By a simple series we mean that the terms cmn 27" 23 are arranged in some definite sequence to, t1,t2, ...,
and we examine the convergence of the series Z;io t;. Of course a necessary condition for the convergence

of a simple series is that the terms ¢t; — 0 as j — oo.



12 D. T. ABELL

Im(zy) Im(zy)
@ - NN
Re(z)) " : Re(z))
o
Im(z) Im(z)
r, 2
Re(2,) Re(z))

FI1GURE 4.2. Computing the domain of absolute convergence. We sketch
here a possible scenario for a function F(z1, z2) whose only singularities are
poles. The upper pair of graphs represents the complex zj-plane, while the
lower pair represents the complex zo-plane. For a fixed value of zp = rpe?®2,
the function F(z1, z2) might have singularities near the origin as shown on
the left in (a). As the phase ¢ of 22 sweeps through an interval of 27, the
singularities in the z;-plane trace out closed curves, as shown on the right in

(b).

the absolute convergence diagram for the Taylor series expansion of the function F'(z1, z2) in
the neighborhood of the origin. By repeating the process just described for a range of values
of the modulus 2 = |23/, one can trace out the entire boundary of the absolute convergence
diagram.

As the discussion of the previous paragraph implies, we shall concentrate much of our
attention on the singularities of the maps we wish to Taylor expand. We therefore want to
comment on how the singularity structure of functions of several complex variables differs
from that of the more familiar functions of one complex variable. In the study of analytic
functions of a single complex variable one frequently encounters non-removable isolated sin-
gularities such as poles and branch points. (One may also encounter an infinite number of
non-isolated singularities that form a natural boundary.) Indeed, such isolated singularities
play an important role in the theory. On the other hand, functions holomorphic in C™ for
n > 2 behave very differently: non-removable singularities are never isolated. This fact means
that by making appropriate adjustments to zo, one may follow continuously a singularity of
F(z1, 22) in the argument z; as the other argument z5 changes. Hence there exists a singular-
ity curve of the form z;(z2). Furthermore, there exists the possibility that “one” singularity
may trace out part (or perhaps all) of the boundary of the absolute convergence diagram.

In a similar vein we note that functions holomorphic in C™ for n > 2 have no isolated
zeroes. Unless such a holomorphic function F' is identically zero, every neighborhood of a

zero 2° contains points other than 2z at which F' = 0 as well as points at which F # 0.
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Theorem 4.6 places straightforward limitations on the possible shapes for domains of ab-
solute convergence, but it turns out that even more restrictive conditions exist. Before we
describe these, however, we must introduce the concepts of a Reinhardt domain and its
logarithmic image.

A Reinhardt domain with center (29,29) is a domain D in C? having the property that for
each (z],24) in D, all (21, z2) for which

|21 = 20| = |21 — 20|  and |22 — 23| = |2 — 29
are also in D. One may view a Reinhardt domain as a generalization to C? of the annular
domain in C!. However, a Reinhardt domain has a more dynamic structure than a simple
Cartesian product between two annular domains in C!: the size (i.e., both the radius and the
width) of the annulus in the z; plane can vary with the size of the annulus in the z5 plane.

A complete Reinhardt domain with center (29, 29) is a domain D in C? having the property
that for each (2], 25) in D, all (21, z2) for which

’zl—zﬂglzi—z?‘ and ‘@—zQ’ﬁ’zé—z%‘
are also in D. In other words, one completes a Reinhardt domain by adding the centers of the
annuli to the domain. Like the Reinhardt domain, a complete Reinhardt domain represents

more than a simple Cartesian product between two disks: the size of the disk in the z; plane
can vary with the size of the disk in the z5 plane.

&2 =In(jz2)

N
\ \ &1 =1In(|z1)

FIGURE 4.3. Example of a logarithmic image D;,,. We show here the loga-
rithmic image of the domain D shown earlier in Figure 4.1.

Now suppose D is a complete Reinhardt domain with center (0, 0). For each point (21, 22) in
D form the point (£1,&) = (In|z1],In|22|). Then the points (£1,&2) form a (two-dimensional)
set denoted by Dj,q and called the logarithmic image of D. We describe the domain D as
logarithmically convez if Dy,q is convex. (The set Dy,q is called conver if one can join any two
points P and @ in D, by a straight line in Dj,4). We illustrate this concept by showing in
Figure 4.3 the logarithmic image of the domain shown earlier in Figure 4.1. The reader may
note from this example that convexity of the logarithmic image does not imply convexity of
the domain itself. Observe also that given the domain of convergence for the power series
(4.6a), one may easily form the logarithmic image of that domain by logarithmically scaling
the axes of the absolute convergence diagram.

We can now state the following



14 D. T. ABELL

Theorem 4.7. Suppose the series (4.6a) converges for all points (z1,z2) in some set A
and that A has the non-empty interior A, Then A™ is a complete Reinhardt domain with
center (0,0). The series converges absolutely in A™ and uniformly in any closed polycylinder
contained in A™. And, furthermore, A™ is a logarithmically convex complete Reinhardt
domain.

The last statement in this theorem—that A is logarithmically convex—represents a
significant constraint on the shape of the DAC. Suppose, for example, that one seeks a rough
picture of the DAC for a power series having the form given in (4.6a). After establishing a
few points on the boundary of the DAC, one may transform to the logarithmic image, form
the smallest convex set having the known locations on the boundary, and then re-transform
back to the original (|z1],|22|)-plane. Then Theorem 4.7 guarantees us that the resulting
domain belongs to the true DAC.

We note in passing that Theorems 4.6 and 4.7 do allow for the possibility that the set
of points for which the power series (4.6a) converges may include sections in the codrdinate
planes (i.e., z1 = 0 or z3 = 0) that extend beyond where one would expect them based on the
interior of the absolute convergence diagram. This possibility explains the “ears” that stick
out along the axes in Figure 4.1.



5. ESTIMATING THE DOMAIN OF CONVERGENCE OF A TAYLOR SERIES MAP

In §4 we learned how to determine the domain of absolute convergence (DAC) for a given
Taylor map by examining the analytic properties of the map it is meant to represent. (See
Theorem 4.6 and Figure 4.2.) Now suppose we know only a given Taylor map—in particular,
a truncated Taylor map. Can we then say anything about the DAC? Strictly speaking, of
course, the answer to this question is “No,” because there exist an infinite number of ways
to complete the series that appear in any given truncated Taylor map. In this sense then,
the title of this section is something of a misnomer: we cannot estimate a DAC; we can only
conjecture about or guess at a possible DAC. On the other hand, if the series that appear in
the Taylor map are not in some sense pathological, we might hope by extrapolation to make
a reasonable conjecture as to what the DAC looks like. In this section we describe a means
for making just such a conjecture. Our method consists of examining the behavior of the
known coeflicients to conjecture a pattern and then extrapolating this pattern indefinitely.
Assuming the validity of this pattern and its extrapolation, we deduce a DAC.

5.1. Taylor Series Maps of a Single Variable

Consider a function f of a single complex variable z such that f is analytic at the origin.
Then according to Theorem 4.2, one may Taylor expand f within some neighborhood of the
origin in the form

(5.1a) fz)=> anz",

with coefficients a,, given by

(5.1b) = — fpgﬁl de = IR

27 - 27Rn J,  ein?

Here the path of integration traverses a circle of finite but sufficiently small radius R = |¢|
centered on the origin. A very simple upper bound on the size of these coefficients a,, has

the form
/Zﬂ |f(Re®)| db = J(R)
0

5.2 Wl < ,
(52) al -

1
- 2wR™

where f (R) represents the average value of |f| along the circular path of integration. If we
fix the value of R, (5.2) tells us that for all n

|an| R" < constant,
or, equivalently,
(5.3) In(|a,| R™) < constant.

Since the terms in the series (5.1a) must approach zero as n — oo in order for the series
to converge, the result (5.3) implies that for R inside the radius of absolute convergence,
the values of ln(|an| R”) will, on average, fall as n increases. Then as R approaches the
radius of convergence, the values of ln(|an| R") will fall less rapidly. And when R reaches
the radius of convergence, the values of ln(|an| R”) will, on average, remain constant with n.
We therefore concoct the following recipe for using only a finite number of coefficients a,, to
make a conjecture about the radius of convergence of the Taylor series (5.1a):

(1) Select a value for R and then plot In(|a,| R™) versus n; but omit all points for which
a, = 0.

(2) Fit a straight line through the points plotted in Step 1 and determine the slope m(R)
of that line.

(3) Define the conjectured radius of convergence R.; by the condition m(R.;) = 0.

15
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Of course one should not expect this recipe to work well unless the points plotted in Step 1
have at least a modest linear correlation.

Using the recipe just described in the last paragraph, we can derive a simple formula for the
conjectured radius of convergence R.;. First recall that standard least-squares analysis gives
the slope m of the “best fit” straight line through a collection of points {(x1,91),..., (zn,yn)}

as [6, p. 104]
= NY i xiyi — D ;%) Vi
N2 - (X xi)Q

Then for the points given in Step 1 of the above recipe, we find for a given value of R the
slope

_ NY . nln(|an| R") —>an ., ln(|an| R")
N, n2— (X, n)2

Now applying the condition m(R.;) = 0, we obtain
Nann|an| +NZn21chj = Zn . Zln|an| + Zn . anchj,

or, solving for In R,

m(R)

A/N) Y-y nfan] =35, ninjan|
>, 2 — (1/N) (2, n)? '
For the conjectured radius of convergence we therefore obtain the result
(1/N) Y, n 3, I fan| — 3, nn |an|>
Y, 02— (1/N)(2, n)? '

Here each sum includes only those terms that correspond to non-zero coeflicients in the Taylor
series, and N equals the number of non-zero coefficients.

In ch =

(5.4) R.; = exp (

5.2. Taylor Series Maps of Two Variables
A Taylor map of two variables z; and 25 has the form (¢f. (3.1))

2 = Ti(2,23),

(5.5) .
2y = Ta(, 23),

where 77 and T, denote a pair of Taylor series in two variables. We want to find for this
map some way of making a reasonable conjecture about the DAC from a knowledge of only
a finite number of series coefficients. One approach, the one we shall use, looks for ways to
reduce each of the two-variable Taylor series 77 and T, to appropriate one-variable Taylor
series—to which we may then apply the formula (5.4).
To reduce a Taylor series T in the two variables z; and 25, consider making the replacements
z1 — 1 cosb,

(5.6) 2o > 1rSin ),
for some definite value of 0, say . Then T becomes a one-variable Taylor series in the
variable r, say, Ty /6(r). Applying (5.4) to Ty ¢(r), we then obtain a conjecture about where
the line (r cos &, 7sin %)—in Cartesian codrdinates—crosses the boundary of the DAC.

To refine our conjecture somewhat, we should account for the fact that a single point
(|21], |z2]) = (r1,72) in the absolute convergence diagram encompasses all points in C? of the

form (rye’1, rye'®2). We might thus modify (5.6) to

21— €11 cos b,
(5.7) i

29— €*P2rsin 6,



§5.2 ANALYTIC PROPERTIES OF TRANSFER MAPS 17

and thereby obtain from (5.4) a conjecture R.;(8, ¢1, ¢2) that depends on the phase angles
¢1 and ¢9 as well as on the angle 6. It turns out, however, that only 6 and the relative phase
a = ¢1 — ¢2 matter. To see this, consider the generic series
a1021 + ao122 + a2021 + a112122 + ag2z3 + - -
Making the replacements (5.7) converts this series to the form
a10€'® 1 cos 0 + agre*®?r sin 6
+ a206i2¢1r2 cos? 0 + allei(¢1+¢2)r2 cosfsinf + a02ei2¢2 r?sin?6 + - -
= (a10€'®" cos @ + age'? sin )r
+ (agoei%’l cos? 0 + a11e"?1192) cos 0 sin 0 + agae’??? sin’ 9)7°2 + e
= (a10cos§ + agre’® sin O)re'
+ (ago cos? 0 + ay1€e' cos 0 sin 6 + agee??® sin® 0) (Tei‘i’1 )2 + -
= a1 (6, a)rei‘l51 + as (0, o<)(7°ei¢’l)2 +oe
where a = ¢1 — ¢2. Since we wish to examine the absolute convergence of this series, the
overall phase ¢1 becomes irrelevant; only the phase difference a = ¢, — ¢ matters.?
Bringing together the ideas of the last two paragraphs, we can now give a recipe for using

only a finite number of series coefficients a,,, in a two-variable Taylor series T'(z1, z2) to make
a conjecture about the DAC:

(1) Make the replacements

21 +— rcosé,

(58) i, o
29— € %rsinf,
in the Taylor series T'(z1, 22), and treat the result as a Taylor series T”(r) in the single
variable r.
(2) Use the formula (5.4) on the one-variable Taylor series T'(r) for a given value of 6
and «, and define the result as R.;(0, o).

(3) Then define

(5.9) R.;(0) = min R.;(8, ).

(4) Make a polar plot, in the first quadrant, of R.;(f) versus 6. The resulting curve
defines a conjecture for the DAC of the two-variable Taylor series T'(z1, 22).

To determine a corresponding conjecture for the DAC of the Taylor series map (5.5), simply
overlay the domains determined separately for the Taylor series T7 and T5. The inner envelope
of these two domains then defines a conjecture for the DAC of the full Taylor series map.

30ne could, of course, have chosen to pull out the phase factor e’?2. Were we to do this, however, the
final result, a conjectured DAC, would be the same.



6. EXAMPLE: THE ANHARMONIC OSCILLATOR

In this section we shall use a concrete example—an anharmonic oscillator—to illustrate
the theory described in §4.2 along with some of that theory’s implications. In particular, we
shall examine the dynamical system described by the Hamiltonian

1 1
(6.1) Houar = 5(0° +0%) = 74",
where ¢ and p denote respectively the coérdinate and its conjugate momentum. This Ham-
iltonian describes the motion of a unit mass in the potential of an anharmonic oscillator—in
this case a harmonic oscillator with a quartic “correction”—and generates the equations of
motion

OH
6.2a §= quar _
(6.2a) 9

OH
6.2b p=——"> — g+ g3
(6.2b) 3¢

We begin by discussing the general behavior of this oscillator in §6.1, giving a detailed ana-
lytic solution in §6.2, and describing the singularity structure of this system in §6.3. Using
that knowledge, we then determine in §6.4 some DACs for Taylor maps with three different
time steps. In addition, we go on to make some important and quite general observations
concerning DACs. Then, after describing in §6.5 very briefly how to obtain Taylor map coef-
ficients, we show in §6.6 that coefficients so obtained do indeed contain information about the
DAC. In §6.7, we discuss the accuracy of Taylor maps in relation to their respective DACs.
We then conclude §6 with a discussion in §6.8 of important lessons to learn from this example
of an anharmonic oscillator.

6.1. General Description

Since Hgyqr is autonomous, the energy E = Hgyqr does not vary. Then an examination of

the potential energy
1 1
Vuar =-¢ - 45
quar (@) = 54° — 74

shown in Figure 6.1, makes clear the following points:

e Oscillatory motion occurs when F < % and the initial coérdinate ¢° lies inside the
well (i.e., ¢* € (—1,1)).

e At small amplitudes, the motion is essentially simple harmonic with period 27. Fur-
thermore, since the restoring force, —dVyyar/dg, weakens with amplitude, the period
lengthens as amplitude increases.

e For £ = %, the system has unstable fixed points at p* = 0, ¢ = 1. There is a
separatrix that separates the phase-space regions of bounded and unbounded motion,
and these fixed points lie on the separatrix.

e When either £ > % or ¢' lies outside the well, the system moves rapidly out to infinity
and, as a simple calculation shows, reaches infinity in a finite amount of time. At the
energy E = %, for example, the time to reach infinity from a point ¢* > 1 is given by
the relation

o0 o0
Too = / dg _ \/5/ 2dq =V2coth™*(¢') = V2tanh™! <i)
¢ D g 9°— 1 q*

The phase-space portrait shown in Figure 6.2 presents an elegant distillation of these points.
Although the non-physical nature of the Hamiltonian H gy, at large values of ¢ represents
an apparent difficulty, we shall turn it to our advantage. Suppose we change the sign of the
quartic term in Hgyqr; then a particle having arbitrary real values for the initial conditions
q" and p® will oscillate indefinitely. However, as we saw in §4.2 and as we shall make clear
through our discussion of the anharmonic oscillator, the analytic structure of a system depends

18
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V(a)

14

FIGURE 6.1. Potential energy of the quartic anharmonic oscillator.

equally on the behavior of the system for complez values of the dynamical variables. And a
trajectory in the complex phase-space of the anharmonic oscillator can reach infinity in finite
time—even when the quartic term has a positive sign. We shall say more in §6.8 about this
case, but for now we choose the negative sign for the simple reason that then (some of) the
singularities admit a simple physical interpretation.

0.5
p 0
-0.5
1o T\
-1.5 -1.0 -0.5 0 0.5 1.0 1.5

q

FIGURE 6.2. Phase-space portrait of the quartic anharmonic oscillator.

6.2. Exact Solution

6.2.1. General Solution of the Quartic Oscillator. Let us start not with the Hamiltonian in
(6.1) but with the more general Lagrangian

_ 1 dQ 2 1 2 6 14
L_Qm(dt) SR
with m, k, k" > 0 and 8 = +1. (Note that this means § = %) By suitable scalings of the

coordinate @, the time ¢, and the Lagrangian itself (which has no effect on Lagrange’s equa-
tions of motion), one can then obtain, without loss of generality, the equivalent Lagrangian

1, lz_é

4
Lquar - §q - 2q 4q .
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This Lagrangian now yields the Hamiltonian

1 B
H uar — S 2 2 St
q 2(1) +q7) + R
which equals our original Hamiltonian (6.1) for the choice of sign § = —1. Since this Ham-

iltonian is time-independent, it is itself an integral of the motion with a constant value F
along any one trajectory; hence

1
(6.3) Hyuar = 5 (0" +¢°) + §q4 =E.
The Hamiltonian (6.3) produces the equations of motion
(643) q =D
(6.4Db) p=-q- B¢,

where 3 = 1. To determine the solution of these equations, solve (6.3) for the momentum p
and substitute the result into (6.4a). Separating the variables ¢ and ¢, and then integrating,
we obtain

, t q d
(6.5) t—tl:/ dt’:/ d .
ti qt /2E—q2—§q4

Our goal is to extract from this result the dependence of ¢/ on the time t and the initial
conditions ¢* and p’. To this end we note first that the integrand contains the square-root of
a quartic polynomial, so the right-hand side of (6.5) is an elliptic integral (see Appendix A).
It turns out that this integral can be transformed to a rather simple standard form and then
“inverted” to obtain ¢f as a function of time.

To simplify and then invert the integral in (6.5), note that in the oscillatory mode the
quartic oscillator has a maximum positive excursion ¢, determined by setting p equal to zero
in the Hamiltonian (6.3). Solving for ¢, and choosing signs for the square roots so as to ensure
¢m ~ +V/2F for small E, we find

(6.62) G = \/6 (—1 n m).

In a similar manner for the maximum positive momentum p,,, we find

(6.6b) pm = V2E.

Now define the frequency

_ Pm
Im

Using these definitions and making the substitution x = ¢/¢,, we can rewrite (6.5) in the
form

) a¥am dx
(©.7) om(t =19 = [ —
q'/am \/1_3%552—63—%554

(66(3) Wm

We also define the parameter

q4
(6.8) m=—pm

and then note (after some algebra) that

2

dm
. 1=—".
(6.9) m+ Yo
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Selecting our origin in time so that t* = 0, we can now write (6.7) in the form
qf/(hn d
(6.10) wmt:/ — _.
qi/(hn \/(1 - )(1 —mz )

The integral in (6.10) has the form of a difference between two incomplete elliptic integrals
of the first kind. Using (A.14b), we may write (6.10) in the form

F(sin™" (¢//qm)|m) = wmnt + F(sin™" (¢"/ gm)|m)

and then invert the elliptic integral to obtain

o

6.11a
( ) i

= sn(wmt + ¢|m).

Here we have defined

(6.11b) © = F(sin™(¢"/qm)|m).

The solution (6.11a) uses the function sn, one of the twelve Jacobian elliptic functions. For
the benefit of those readers not familiar with elliptic functions, we include in Appendix A a

description of these functions and some of their remarkable properties. To simplify (6.11),
we use the addition theorem (A.7a) for the function sn; the solution becomes

i — sn(wmt + plm) = sn(wmt) en(p) dn(p) + sn(p) cn(wm,t) dn(wp,t)

Gm 1 — msn?(wpt) sn?(p)

)

where the parameter m for the elliptic functions is given by (6.8). (From here on we shall
follow the usual practice of not displaying the parameter explicitly unless its absence will
cause confusion.) By using the Pythagorean identities (A.8) together with (A.14b), one can
evaluate the elliptic functions at the location ¢ of (6.11b):

S0 = '/ Gm,

cng =+/1-(¢"/gm)?

dn g = £v/1 —m(q"/qm)*.

Then note, using (6.3), (6.6b), (6.8), and (6.9), that

eng dnp = £v/(1 — (67/4m)?) (1 = m(q'/amn)?) = £/ pm.
With these results and (6.6c), the solution for ¢/ then becomes
¢ en(wmt) dn(wmt) + (p¥/wm) sn(wmt)
1 —m(q"/gm)? sn*(wmt) '
To complete the solution for the anharmonic oscillator, we determine the correct choice of

sign in (6.12) by examining its behavior for small ¢. Using the series expansions (A.5), we
may approximate (6.12) as

(6.12) qf = ¢m su(wpt + plm) =

¢f = ¢ £p't + O(t?);
hence we select the positive sign. We then obtain our final expression for the motion generated
by the Hamiltonian Hgye, in (6.3):
1 —m(q"/qm)? sn®(wint)
where (6.8) defines the parameter m of the elliptic functions.* According to (6.4a), we can
determine the conjugate momentum p by evaluating the time derivative of the codrdinate

3

4The reader is hereby forgiven for not thinking (6.13a) simpler than our initial solution (6.11a). As we
shall see, however, the form in (6.13a) proves quite useful—particularly for locating the singularities of the
motion (see §6.3).
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q(t). Using the derivatives (A.9) and the Pythagorean identities (A.8), we obtain (after
considerable algebra)
(6.13b)

o(t) = [p'endn —(1 + m)wmq' sn] [1+ m(q"/gm)? sn?] + 2m[sn® +(¢"/ gm)?] wmq’ sn

[1— m(g/gm)? sn?]?

where here all of the Jacobian elliptic functions use the same argument and parameter as
in (6.13a). Note that in the solution (6.13) the choice of sign S = +1 for the quartic term
in the Hamiltonian (6.3) appears only via the constants ¢, and w,, defined in (6.6), and
the parameter m defined in (6.8). In addition, the reader should observe that the initial
conditions ¢* and p’ appear in the solution (6.3) not only in the locations explicitly shown,
but also via the energy dependence of m, ¢, and w,,.

The alert reader will have noticed our glib treatment of the choice of branch in (6.5) and
afterwards. Our solution can, in fact, be fully justified, but we shall not delve into the matter
as a proper explanation requires a discussion of Riemann surfaces [74, 84].

3

6.2.2. Degenerate Solutions of the Quartic Oscillator. The results (6.13) describe the general
motion of the quartic anharmonic oscillator in terms of Jacobian elliptic functions. There
also exist, however, some degenerate motions.® Recall, for example, our original Hamiltonian
(6.1), or (6.3) with 8 = —1. There the degenerate cases correspond to the separatrices and
fixed points that occur at particular values of the energy E, or, equivalently, the parameter
m. (See Figure 6.2.) For the general Hamiltonian (6.3) we begin identifying the degenerate
cases by finding the fixed points. Setting ¢ and p to zero in the equations of motion (6.4), we
find three fixed points:

(6.14) 9o =0, gx =%/ -0

—all with p = 0. (Recall that § = +1 = %) According to (6.3), these fixed points correspond

to energies £ = 0 and —g; and according to (6.6a) and (6.8), these energies correspond to

parameters m = 0 and m = 1, respectively.® As described in §A.2.2, these parameter values
do indeed correspond to special cases of the Jacobian elliptic functions: the elliptic functions
become circular or hyperbolic when the parameter equals respectively zero (at £ = 0) or one

(at E=-2).
Solution for E = —g (m =1). For 8 = 41 this energy necessarily entails purely complex
motion. For § = —1 and real initial conditions, however, this energy corresponds to motion

along one of the separatrices shown in Figure 6.2. The possible motions then comprise sitting
atop one of the unstable fixed points; approaching one of the unstable fixed points, which
requires an infinite amount of time; or traveling away from one unstable fixed point out to
infinity in a finite amount of time and then returning from infinity to approach the other
unstable fixed point in an infinite amount of time. We shall see these observations borne out
in the solution below.

Using (6.6), we note that at the energy E = —%,
Q72n = _ﬁu
and
1
Wi =

50f course these degenerate solutions can be obtained, when necessary, by taking suitable limits of the
general solution. For certain numerical work, however, it proves useful to have explicit expressions.
6For the case E = 0, we must use limg_,o to obtain the proper result.
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Using these values and the degenerate cases listed in Table A.2 for the Jacobian elliptic
functions, we can now reduce the general solution (6.13a) to the form

- q* sech? (t/\/§) +/2p' tanh(t/ﬁ)

B 1+ B¢?* tanh? (t/ﬁ) '

To simplify this expression further, we will need the relation

(6.16) 2p> = —B(1 + 8¢%)°.

This expression, obtained by setting £ = —% in (6.3), will prove most useful.

If p° = 0, then (6.16) tells us that qi2 = —f3, which means, according to (6.14), that ¢°
must be one of the fixed points gi.. We can see this directly from our solution (6.15): since

(6.15) q(t)

here ﬁqi2 = —1, we obtain
q* sech? t/h/2
(6.17) ol = LUV
1 — tanh (t/\/i)
If ¢' = 0, then (6.15) becomes
(6.18) q(t) = V2p' tanh(t/V/2),

: i B
where now, according to (6.16), p* = £/ —5.

If neither ¢ nor p' vanishes, we can still simplify (6.15). First note from (6.16) that
B=—(1+ 6qi2)2/2pi2, hence one may write the denominator of (6.15) as
32
1+ ﬁqiz tanh®(t/V/2) =1 — 2q —(1+ ﬁqi2)2 tanh®(t/v/2)
pl

(6.19)

= (1 =x*1%) = (L= x7)(1 + x7),
where
(6.20) 7 = tanh(t/V/2),

and, from (6.16),

qi

(6.21) Y= 5

i2 i
(1+B¢7) =£v-Bd".
Next consider the quantity

1=xn)A+7/x)=1-72+(1/x = x)7= (1 —7%) + (1_X2>T.

Since )
1-x* 1+p¢ V2p!

[ 2 i
X F (14 5¢") q
and
1 — 7% = sech® (t/\/i),
we learn that
(6.22) ¢'(1 — x7)(1 +7/x) = ¢’ sech? (t/\/i) +V2p tanh(t/\/i),

which is just the numerator of (6.15). Now using (6.19)—(6.22), we can reduce (6.15) to the
form

Ay ¢ + 1:{%2’1,2 tanh(t/\/i)

(6.23) a(t) =q 1+xr 1+ \/gipi (1+ ﬁqu) tanh(t/v/2) '
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When we first began discussing this case, £ = —%, we commented on the real-valued
motion for the system with § = —1, shown in Figure 6.2. From the result (6.23) just obtained,
we can see our specific observations borne out. Consider first the case of ¢ approaching infinity.
Since lim;_, o0 tanh(t/\/i) =1,

. i(1+1/x q
Jim q(t) = ¢ ( Trx ) =3 =+V-8=qs,
where we have used (6.20), (6.21), and (6.14). The unit mass of our quartic oscillator will
therefore approach one of the fixed points as ¢ — oo. This behavior corresponds to motion
along the (possibly complex) separatrix. Now consider our other observation, the one about
arriving at infinity in finite time. The particle will reach infinity when the denominator in
(6.23) vanishes, i.e., when Xtanh(t/ﬁ) = —1, which can happen only if x is a real number
of magnitude greater than one. For the system with 3 = —1 (Figure 6.2), this means ¢° is
pure real and |¢'| > 1; and for the system with 3 = +1, this means ¢’ is pure imaginary and
l¢'| > 1. In addition, if x < —1, the particle will reach infinity in finite time; if x > 1 the
particle will also reach infinity in finite time, but only by traversing its orbit backwards from
the initial time ¢ = 0.

As with the general solution, we can determine the degenerate solutions for the conjugate
momentum p by evaluating the time derivative of the codrdinate q(t). If p* = 0, (6.17) implies

(6.24) p(t) = 0.
If ¢' = 0, (6.18) implies
(6.25) p(t) = p' sech’ (tV/2).

And if neither ¢ nor p’ vanishes, then (6.21) and (6.23) imply (after some algebra) that
sech’(t/V/2)
[1 + Xtanh(t/\/i)]T

Solution for E =0 (m = 0). Our work for this special case will parallel closely that just
completed for the case £ = —% If energy F = 0, the choice of sign 0 = +1 means that
for real initial conditions the unit mass rests on the bottom of the potential well centered
at the origin; and for non-zero initial conditions the motion is necessarily purely complex.
On the other hand, the choice of sign 8 = —1, as in the Hamiltonian (6.1), means that for
real initial conditions, the possible motions comprise sitting on the stable fixed point at the
origin or repeatedly circulating out to infinity and back with period 27w. We shall see these
observations borne out in the solution below.

Using (6.6) and taking the limit as E vanishes, we find

(6.26) p(t) =

wm = 1.
In addition, we note from (6.8) and (6.9) that as £ — 0, or m — 0,

2 2
m q Ba B B
 —_pgim _ _FPdm _ 1 2
z - Pip= - amtl—o 3
Using these two results and Table A.2, we can reduce the general solution (6.13a) for the
coordinate ¢ to the form
qcost + pisint
(6.27) 9(t) = —F 5 =2
1+ 5¢7sin”¢t

To simplify this expression further, we will need the relation
(6.28) 2w? = —B¢*(¢* + 20),
obtained by setting F = 0 in the Hamiltonian (6.3).
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If ¢' = 0, then (6.28) implies p’ = 0, and (6.27) therefore becomes
(6.29) g(t) = 0.

If p* = 0, then (6.28) tells us that ¢ = 0, v/—23. We have already disposed of the ¢* = 0
case. For ¢ = ++/=20, (6.27) reduces to

qi cost qi
6.30 t) = = .
(6.30) 1) =T, = cost
If neither ¢ nor p’ vanishes, we can still simplify (6.27). First note from (6.28) that
§q4 = —(q? + p?); hence we may write qi2 times the denominator of (6.27) as
qi2 — (qi2 + pi2) sin?t = qi2 cos? t — pi2 sin? t.
Using this result, we can now reduce (6.27) to the form
. . ;2
2 q'cost+ p'sint q"
(631) Q(t) =q D) 2 .92, 3 T
q'“cos?t — pi“sin®t  ¢'cost — p*sint
As we did for the case E = —£, we now observe how the result (6.31) just obtained for
1 J
E = 0 bears out the observations we made earlier for the system with = —1. The solution

in (6.31) is periodic with period 27 (independent of 8!). Furthermore, for non-zero but real
initial conditions, the solution becomes infinite whenever tan(t) = ¢*/p’. In other words, the
unit mass in our quartic anharmonic oscillator repeatedly circulates out to infinity and back.
The reader will note that although the overall motion has period 27, the trips to infinity
occur with period w. The motion in this case corresponds to a particular orbit which passes
to the right of the ¢° = +1 unstable fixed point (see Figure 6.2), travels out to +oo, returns
from —oo along an orbit that passes to the left of the ¢* = —1 unstable fixed point, goes back
out to —oo, and then returns from +oo along the initial curve to the right of ¢* = +1.

We now determine the degenerate solutions for the conjugate momentum p by taking the
time derivative of the coérdinate q. If ¢° = 0, (6.29) implies

(6.32) p(t) = 0.
If p* = 0, (6.30) implies

o sint
6.33 t)=q¢ —=.
(6.33) plt) =g 2ok

And if neither ¢ nor p’ vanishes, then (6.31) implies

;2 plcost+ ¢'sint

.34 t) = . . .
(6:34) p(t) =q (¢* cost — pisint)?

6.3. Singularity Structure

According to the material discussed in §4.2 (Theorem 4.6 and Figure 4.2 in particular),
one must have a thorough knowledge of a function’s singularity structure in order to find
the DAC for a Taylor series representation of that function. In a similar fashion, one must
know the singularities of the motion of a dynamical system in order to find the DAC for
any corresponding Taylor map. For our example—the anharmonic oscillator—we shall use
the analytic results of §6.2 in this section to characterize and determine the singularities
of the motion. Then in §6.4 we shall determine the actual DAC for several Taylor maps
corresponding to different size steps in time.
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6.3.1. Characterizing the Singularities. First examine the equations of motion (6.4) for the
anharmonic oscillator. Since the right-hand sides are both polynomial in the variables g and
p, they fail to be analytic only at infinity. This information and Poincaré’s theorem together
tell us that the general solution (6.13) for the anharmonic oscillator will be analytic with
respect to ¢%, p’, and t as long as neither ¢(¢) nor p(t) becomes infinite. Furthermore, because
the energy remains constant along a given trajectory, the Hamiltonian (6.3) implies that ¢
and p become infinite together.” It follows that the singularities of the dynamical variables
q(t) and p(t) must occur at identical locations; hence we need to determine the singularities
only of one or the other. Because the analytic expressions given in §6.2 for ¢(t) appear simpler
than those for p(t), we shall examine the singularities of the codrdinate g(t).

According to the general solution (6.13a) for ¢(t), singularities of the motion can occur
only if the numerator becomes infinite or the denominator vanishes. Let us examine first the
infinities of the numerator. Here we must treat separately the cases ¢' # 0 and ¢* = 0. To
investigate the first case, recall that the co-polar trio of Jacobian elliptic functions sn, cn, and
dn share exactly the same singularities, all of which are simple poles occurring on a regular
lattice in the complex plane of the argument w,,t. (See §A.2.1.) Since the product of two
simple poles yields a double pole, it follows that for ¢* # 0 and a value of w,,t near one of those
common poles, the leading order behavior of the numerator in (6.13a) is ¢* cn(wy,t) dn(wmt).
But notice that the denominator in ¢(t) also contains a double pole, and hence the quotient
at this location can be finite. Indeed, using (A.6), we see that near a pole of the functions
sn, cn, and dn, (6.13a) becomes

- cs(wimt) ds(wmt).

q(t) = - =

O a7 @nt)  ma

Here cs and ds are two other Jacobian elliptic functions, and they also have simple poles; but
never do these poles coincide with the poles of sn, cn, and dn. Therefore, in the case ¢* # 0,

all the singularities in the numerator of (6.13a) correspond to removable singularities of g(t).
For the case ¢' = 0, (6.13a) reduces to

g en(wnt) dn(wnt) _

(6.35) q(t) = 2 sn(wpt).

Wm

In this case ¢(t) simply inherits all the singularities of the elliptic function sn, and these are
well understood (see §A.2.1).
We turn now to the other possible source of singularities in the motion ¢(t): the zeroes of

i 2
(6.36) Dyuar(q,pt) =1 —m (q_) sn? (wpnt),
am
the denominator in (6.13a). Such zeroes occur whenever
L gm
(6.37) sn(wmt) = £—— 17

vm ¢

It turns out that the solutions of this equation yield enough information to determine the DAC
for any Taylor map representation of the anharmonic oscillator. At first, however, this does
not seem possible. Since the Jacobian elliptic functions are of order two, Theorem A.3 tells
us that (6.37) has four solutions—two for each choice of sign—in any period parallelogram
(PP); and this suggests that ¢(t) is an elliptic function of order four. But we know from
(6.35) that when ¢' = 0, the solution ¢(t) is an elliptic function of order two. In addition,
note that even if ¢* # 0, we can (at least in some cases) adjust the initial time #* (and the
initial momentum p?) so that the oscillator will follow the same trajectory as before—but
with ¢* = 0. These observations suggest that two of the possible singularities determined by
(6.37) must be removable.

TOf course the choice of sign 6 = 4+1 means that ¢ and p can reach infinity only for complex values of the
initial conditions ¢* and p°.
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To see that two of the singularities identified by (6.37) might indeed be removable, note
first that the Pythagorean relations (A.8) allow us to write the numerator of (6.13a) as

7

q" en(wnt) dn(wpnt) + P sn(wp,t)
Wi,
g 2 2 p'
= +¢" /(1 — sn2(wt)) (1 — msn2(wt)) + » sn(wpmt)
= +¢"\/1 — (m+ 1) sn2(wpt) + msn*(w,t) + P sn(wmt).
Wm

Then observe that, according to (6.8), (6.9), and (6.37),

2 2 4
9 A 9 g, 1 4F 1
(m + 1) Ssn (wmt) = ﬁqug = ﬁ_2_ = _26?7
and
1 g} 41E
msn4(wmt):—q—f’jl: . —_g__
m qZ T q
In addition, the use of (6.6b), (6.6¢), , and (6.37) reveals that

p' Pl gm / 4E q? / AE p'
sn(wy, :l:———: = —ﬁ——:l:\/ ﬁ—.
Wm ( ) q* V/m wp, qm

Putting these results together and using the Hamiltonian (6.3), we find that the numerator
of (6.13a) becomes

. 1 AE i
+q' [1420— - B— +/—25%
q q q

; 1 2p” + 2¢°° + B’ P’
zj:q\/1+2ﬁ—_2—ﬁ - j:\/—2ﬁg
q q

:iqi\/Hzﬁ— —25— 25— —521\/711.
q

And because % = 1, the numerator now takes the form

%

p

m

(6.38) q" en(wpt) dn(wpnt) +

sn(wmt) = £v/—28 2 + /=282,
q q

which may or may not vanish, depending on the relative sign of the two terms. To see what
happens with these signs, consider a PP centered on the origin for the function sn(wy,t|m).
Now suppose wy,t1 and wy,te denote the two points in this PP that satisfy (6.37) with the
plus sign. Since the function sn is odd, it follows that the points —w,,t; and —w,,ts, which
belong the same PP, must be the two points that satisfy (6.37) with the minus sign. Now
recall that the functions cn and dn are both even and hence do not change sign with w,,t. It
therefore follows from (6.38) that of the four points in the PP that satisfy (6.37)—i.e., cause
the denominator of (6.13a) to vanish—exactly two also cause the numerator of (6.13a) to
vanish. Then in those cases the zeroes of the denominator may indeed be removable.

The observations made in the last two paragraphs show that not all the zeroes of (6.37)
need correspond to singularities of the anharmonic oscillator. On the other hand, because
we want to determine the DAC, we need to know only the absolute values ¢|. Now

consider what happens when we change the sign of one or both of the variables ¢* and p'.
Because the Hamiltonian (6.3) is even in ¢ and p, such a change of sign has no effect on the
energy E, and therefore no effect on the values of m, ¢, pm, or w,,. Hence (6.38) tells us
that if a particular choice of ¢, p?, and ¢ leads to a removable singularity of ¢(t)—i.e., a zero
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of both numerator and denominator—then reversing the relative sign of ¢* and p* will lead to
a non-removable singularity, and vice versa. It therefore follows that any point (¢°, p?) that
satisfies (6.37) for a fixed time step 7 yields a point (‘qi| , |pi‘) that limits the DAC for the
anharmonic oscillator’s time-7 map.

Now observe that if ¢ = 0 and the energy E has any finite non-zero value,® then the
right-hand side of (6.37) becomes infinite. The solutions of (6.37) thus include the non-
removable singularities found when we examined the numerator of ¢(t) (see (6.35)). We
therefore conclude that the set of all points z* = (¢*, p*) that satisfy (6.37) with the time step
T completely determines the entire DAC for a Taylor map representation of the anharmonic
oscillator’s time-T map.

6.3.2. Symmetries of the Singularities. From the equations of motion (6.4) for the anhar-
monic oscillator, we can immediately identify two useful symmetries of the motion: complex
conjugation and sign reversal. If, for example, z(t) = (¢(¢),p(t)) represents one particular
solution to (6.4), then z*(t) = (¢*(¢), p*(t)) and —z(¢) = (—q(t), —p(t)) represent two others.
It follows that if the point (¢%, p?) is one singularity of the time-7 map, then so are the points
(", p"), (=¢',—p"), and (—¢*", —p'").? In addition, for our present needs we can identify
a third symmetry: The observations of §6.3.1 tell us that for the purposes of determining a
DAC for the anharmonic oscillator, we may change the signs of ¢ and p independently.

The symmetries just identified offer an important means for reducing the amount of work
involved in finding the DAC of a time-7 map for the anharmonic oscillator. To see this, begin
by noting that since one of the points {¢’, L —qi*} must lie in the first quadrant, we can
identify all the solutions of (6.37) by looking at just the first quadrant of ¢* and the (entire)
plane of complex p’. Next observe that any point in the lower-half-plane can be removed to
the upper-half-plane by simple negation, and further that in determining the DAC, we may
change the signs of ¢ and p independently. It therefore follows that if we wish to determine
the DAC of a time-7 map for the anharmonic oscillator, we need to examine only the first
quadrant of the complex ¢* plane and the upper-half-plane of complex p* for solutions to
(6.37).

6.4. Domain of Convergence

6.4.1. A Real Singularity. We turn now to the actual determination of a DAC for a given
Taylor map. In particular, let us examine the dynamical system described by the Hamiltonian
(6.1), or (6.3) with 3 = —1, and consider the map M7 that carries the point z* = (¢',p")
forward in time by a fixed amount 7, say 7 = 7.1 One outer limit on the DAC for the
time-seven map can be obtained in a fairly straightforward manner by considering only real
¢" and p’. After setting 7 = 7 , look at what happens when p* = 0—4.e., when we release the
anharmonic oscillator from rest. If }ql} < 1, the system will oscillate indefinitely. But if, say,
q' > 1, the system will reach infinity in a finite time; and as ¢* increases, the time to reach
infinity will shrink. For some particular coérdinate value g, the system will reach infinity
in exactly the time step 7 = 7: M7=7(¢},0) = oo. The point (g},0) thus represents one
singularity of the time-seven map for the anharmonic oscillator. Now increase the momentum
p’ to some tiny positive value p{—i.e., give the system a tiny push in the positive direction
at the time of release. In this case the system released at ¢ will require less than seven units
of time to reach infinity. We must therefore release the system from some point ¢i < ¢ in
order to again reach infinity in exactly one time step, i.e., so that M™=7(gi, pl) = co. If we
continue to increase p’, the corresponding ¢ will continue to decrease—until we reach some
value of p' for which M™=7(0, p') = oco. Figure 6.3 shows the locus of points (|¢'|, [p’|) thus

8If both ¢° and E vanish, then q(t) = p(t) = 0; hence no singularity can arise in this case.

9That changing the sign of both ¢* and p? gives another singularity follows also from some of the observa-
tions in §6.3.1.

10Since 7 ~ 27, this choice of 7 corresponds, in the language of accelerator physics, to a map for approxi-
mately one betatron oscillation.
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obtained. That curve must form an outer limit for the DAC of the anharmonic oscillator’s
time-seven map.

i
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FIGURE 6.3. Real singularities for the anharmonic oscillator’s time-seven
map. The curve shown here represents a locus of points (¢°, p®) for which
M™=7(¢*, p') = co. The reader may note that this curve lies very near the
separatrix. This happens because the time step 7 = 7 is relatively long in
this example: The separatrix, by definition, contains in its neighborhood
points that reach infinity for any 7 — oo; and the behavior for 7 = 7 is not
so different from that for 7 = oc.

6.4.2. Complezx Singularities. If only real values of ¢ and p® were relevant, all of the points
below the curve in Figure 6.3 would belong to the DAC for the anharmonic oscillator’s time-
seven map. However, according to the theorems in §4.2, we must examine our dynamical
system for not only real but also complex initial conditions ¢* and p’. On doing so, we shall
discover that singularities of the map M7™ can exist for values of ¢ and p’ whose absolute
values lie inside the curve determined by the singularities on the real axes.

Figure 4.2 illustrates the basic idea behind finding the DAC of the Taylor map representa-
tion of a time-7 map for a given dynamical system. In addition, §6.3.2 describes how we may
for the anharmonic oscillator take advantage of certain symmetries to reduce the amount of
work required. To implement these ideas, we might fix p’ to some location in the upper-
half-plane, evaluate ‘unar (¢*, % T)‘ over an appropriate region in the first quadrant of ¢*,!!
and then note the location of any zeroes. Making successive changes in p’, we can produce
a sequence of pictures of |Dgyar|, each time noting the locations of zeroes and thus accumu-
lating the data required to determine the DAC for the time-7 map. This method, however,
suffers from two principal drawbacks. First, evaluating |Dgyqr| is a relatively slow operation.
Second, and worse, some of the zeroes turn out to be extremely sharp and therefore require
the evaluation of |Dgyqr| to very high resolution over the first quadrant of the ¢° plane.

6.4.3. Tracking the Singularities. A better approach to finding the DAC for the time-7 map
makes just one high-resolution image of ‘unar (¢*,p% 7')‘ to determine accurately the locations
of the half-dozen or so zeroes nearest the origin. Then, rather than making new pictures for
each subsequent value of p?, it uses Newton’s method to home in on the new values of ¢
after each small change in p’. As long as we make sufficiently small changes in p?, only a few

HThe curve obtained in Figure 6.3 gives a connection between {ql{ and { pi| that defines the “appropriate”
region.
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iterations will be required to determine the new values of ¢*. In this manner we may track
the singularities in the ¢’ plane as we vary p’.

To implement the tracking of singularities, recall first that if wuy lies near a root of the
function y(u), then Newton’s method gives the contraction map

y(ux)
y' (ur)
as an improved estimate of the nearby root [16, 50]. Furthermore, this map when iterated
converges very rapidly (if at all), and it works even if y and u are complex.

Now observe that the function Dgyqr(q*, p';t) of (6.36), whose roots we wish to locate in
the ¢° plane for fixed p’ and t, has the basic structure

(639) Uk+1 = Uk —

(6.40) Dyuar(d', 1) = 1 — ¢ f(E),
where
(6.41) F(EB) = 2 s0*(wpnT)

is a function of ¢* and p’ only via the energy E given by (6.1). (Here, because we shall hold
the time step fixed, we have suppressed the ¢-dependence of f.) To apply the contraction

map (6.39) to Dyyar, note that 0F/dq" = ¢* — ¢’ = qi(1— qiz), and hence

ODguar , ; 2 OF -

—(¢",p"st) = —¢" f(E) 55 — 24" f(E)

(6.42) 9q’ aq’
i3 i2 i

=—q" (1-q")f(E) - 24'f(E).

Because of the complicated dependence of f on E, it is easiest to replace f/(E) by the simple
estimate

(6.43) 7y = LEFDIEZD i)

where € is an appropriately small number. In the present work we have found a useful choice
in

£ =max(107%, 1071E).
Using (6.39)—(6.43), we then obtain a contraction map for ¢* in the form

1- g f(E)
G(1— @) F(E)+ 2 f(E)

Suppose we start from a point (¢*,p?) that satisfies (6.37) and then change p® to p’ + dp'.
It turns out that using the original ¢* as a starting point for the contraction map (6.44)
works successfully only if ’dpi‘ is very tiny. Efficient tracking of the roots of Dgyar(q*, p’;t)
therefore requires some means of estimating dq’ for any given dp®. To do this, recall that we
are following solutions of Dyuar (g%, p';t) = 0. Taking the differential of both sides yields the
relation

(6.44) qk+1 = qk +

8unm« i 0D uwar i
—dq" 22 dpt =0
ag 4 + opr P =0

which implies the estimate

_ aunar/api 7

6.45 dg' ~ — L2 gpt
(6.45) q D g7
From (6.40) we find
oD . 2 OF 2
4 qular Pt = —gt /E — 4 llE.
(6.46) oy (¢",p";t) ‘Jf(>apz ¢ p'f(E)
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Now using (6.42), (6.43), (6.45), and (6.46), we obtain
—q'"p' f(E)dp' _ —q'p" f(E)dp’
¢ (1—¢*)J(B)+2¢f(E)  ¢*(1—¢")J(E)+2/(E)
In summary, then, we may determine in the following manner the DAC for a Taylor map
representation of the anharmonic oscillator’s time-7 map:

(6.47) dq' ~

(1) For a finite non-zero value of momentum p’ in the upper-half-plane, make a high-
resolution image of | Dguar(¢*,p’; 7)| in the first quadrant of the ¢’ plane. Then, with
the aid of the contraction map (6.44), locate the zeroes of Dgyqr that appear in this
image.

(2) In some systematic fashion vary p’ in the upper-half-plane—say back and forth along
a sequence of semicircles of increasingly larger radii centered on the origin.

(3) For each step dp’ and for each solution (¢°,p') of (6.37) evaluate dg' according to
(6.47). o

(4) For each solution (¢, p%) of (6.37), identify another nearby solution (g%, p?) by using
the point (¢° + dq*,p’ + dp’) as a starting point for iterating the contraction map
(6.44).

(5) For each point identified in Steps 3 and 4 as a solution of (6.37), plot the point
(|qi| , |pi‘) in the absolute convergence diagram. The inner envelope of these points
forms the DAC for the anharmonic oscillator’s time-7 map.

6.4.4. Tracking the Nearest Singularities. The technique just described in §6.4.3 for track-
ing the singularities of the anharmonic oscillator in order to determine a DAC does indeed
work, and it is certainly faster than creating and examining lots of high-resolutions images
of | Dguar(¢*, p*; 7)|; but still it requires a profligate computational effort. In this section we
describe a useful refinement that eliminates much of the work.

Figure 4.2 illustrates the basic approach for computing a DAC for the anharmonic oscil-
lator. (In that figure z; and zp play respectively the roles of ¢¢ and p’.) The principal idea
involves changing the phase 8, of the initial momentum

(6.48) p'=rpeir,

watching the movement of each singularity—or root of Dgyqr—as it moves around a closed
curve in the ¢* plane, and then identifying on each curve the point ¢? with minimum modulus.
Repeating this process for many different values of r,,, we can determine the DAC for the time-
7 map. Note that the profligacy of this method results from sampling a large range of 6,; if
we could instead identify immediately the new value of ,,, then we could effect a considerable
computational savings. Consider, for example, the closed curve traced in the ¢* plane by just
one of the roots (q%,p’) of Dyuar as p® rotates about the circle }pl’ = rp, = constant (see
Figure 4.2(b)). In addition, let (¢},p’) denote the point on this curve for which |¢'| has a
minimum. If we now increase the modulus of p°, the curve in the q plane will expand, and we
shall find on this expanded curve a new point (¢*., p*.) for which ¢* has minimum modulus.
In general, we would like to track the roots of Dyyar(q*, p’;7) in such a way that as we vary
|p*|, we follow the points (g, pt).

Figure 6.4 indicates the essential geometry of a small change in p’. For a given change
dry in r, = |p'|, we want to use first (6.47) to estimate dg’, and then the contraction map
(6.44) to home in on the new value ¢i of the coordinate. We shall therefore need to know
quite accurately the value of ¢ that places us on the path that minimizes ‘q_l‘ Using (6.48),
writing
(6.49) dp* = p(p)eOrte),
and applying the law of cosines to the triangle with sides p?, dp’, and p’ + dp’, we obtain

(rp + drp)® =12 + p*() + 2rpp(ep) cos ¢;
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Im(p')

FIGURE 6.4. Geometry of a small change in p’.

hence
0= p*(¢) + 2rpp(p) cosp — (21 + dry)dry.
Solving this quadratic equation for p(p) yields

p(p) = —rpcosp = \/rg cos? o + (2r, + drp)dry,

or, since p(yp) > 0,

(6.50) ple) =1p (\/77 + cos? ¢ — cos w) = rpk(p),

where
(6.51) n = (“%)%’
(6.52) k(p) = /1 + cos2 p — cos .
If we write (6.47) in the form . o
dq* ~ —&q"dp’,
where
p' F(B)
¢*(1 - ¢*)J(B) +2f(E)’

(6.53) €=

then we may use (6.47), (6.48), (6.50), and (6.53) to estimate the new value of the codrdinate

¢ as
¢ g +dg' =g (1= &dp') = ' (1= Ep(i)e’n %)
= q' (1= &rpe™ r(p)e™®) = ¢' (1 — Ep'r(p)e’®).

To minimize |gi|, we therefore choose ¢ = @ so as to minimize |1 — &pir(p)e™|.
We can now write down an improved scheme for determining the DAC for a Taylor map

representation of the anharmonic oscillator’s time-7 map.

(1) Using the basic procedure given at the end of §6.4.3, move p’ along a full semi-circular
arc of constant modulus r, = ’pl‘ in the upper-half-plane and track the singularities
in the ¢* plane. The result will be a set of closed curves in the ¢' plane. (This follows
from two observations: (i) Moving p’ around an entire circle must produce closed
curves in the ¢* plane. (ii) The symmetries described in §6.3.2 allow us to reduce our

examination of the p’ plane to just the upper-half-plane.)
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2) Along each closed curve identified in Step 1, determine the point 2! = (q¢’,p’) for
g (& c (&
which |gZ| is a minimum.
3) Change r, = |p’| by a small amount dr,, and for each point z! determine the angle
ge Tp y P c g
¢ that minimizes the quantity

(6.54) () = |1 = &pir(p)e™?]
where k() and £ are given by (6.52) and (6.53), respectively.
(4) Define
dp;, = p(pc)e’ Ut
and evaluate
dq, = —&qzdp;.
(5) For each point z’ determine the point z¢. = (¢',,p',) by using (¢’ + dg’, pi. + dp)
as a starting point for iterating the contraction map (6.44). Then plot all the points

(’q_ic p_ic‘) in the absolute convergence diagram.
(6) Repeat Steps 3-5 for a range of 7.

)

The inner envelope of all these points forms the DAC for the anharmonic oscillator’s time-7
map.
We must issue two caveats concerning the procedure just described for finding the DAC

of a given Taylor map. First, for small values of r, one must use very small values of dr,
dr
. _
zero, even tiny changes dr, can yield unacceptably large values of dq¢’. The solution in this
case is simply to reverse the roles of ¢ and p in the above analysis. The procedure remains

essentially the same, differing only in the following ways:

to ensure that remains small. Second, wherever the curve ( ‘qé| , |pf:‘) has a slope near

e Everywhere, except for labels on the phase-space axes, make the interchanges
P, e,
pe = qo O o

e The contraction map for p is

B 1- ¢ f(E)
(6:55) Pt =PRtE (B

e Replace ¢ of (6.53) by

¢*(1 - ¢*)F(E) + 2/ (E)
qip” F(E) '

6.4.5. Domains of Absolute Convergence. Using the recipe just described in §6.4.4 for deter-
mining a DAC for the anharmonic oscillator, we obtain the results shown in Figure 6.5 for the
case 7 = 7. There we plot the paths traced in the (|¢'|,[p’|) plane by three different singular-
ities, and the shaded region represents the DAC. The Taylor series map for the anharmonic
oscillator with time 7 = 7 converges for any initial point z° = (¢%,p’) inside this domain.
Furthermore, the Taylor series map diverges for any initial point outside this domain. The
reader should note in particular that two different complex singularities cut inside the region
shown earlier in Figure 6.3.

Now consider how the DAC changes as the time step changes. If we choose a larger time
step 7, then we must, in some sense, start farther from infinity in order to arrive there
in exactly one time step. Hence, the singularities of the map M”™ move inwards, towards
the origin, as 7 increases. Figure 6.6 illustrates exactly this behavior; it shows the DAC
boundaries obtained by following the procedure of §6.4.4 for three different time steps: 7 =1,
7, and 15. For a time step of one, the boundary of the DAC lies well outside the separatrix.

(6.56) (=
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FIGURE 6.5. Absolute convergence diagram for the time-seven map. This
graph shows the path in the (|¢'|,[p’|) plane of three singularities of the
anharmonic oscillator’s time-seven map. The inner envelope of these curves
bounds the DAC (the shaded region) for the corresponding Taylor series
map.
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FIGURE 6.6. This graph shows the DAC boundaries for the Taylor series
map at three different time steps: 7 =1, 7, and 15. The boundary for 7 =1
lies well outside the separatrix. For 7 = 7, a relatively long time step, part of
the boundary lies right next to the separatrix, while the rest of the boundary
cuts inside the separatrix. And for 7 = 15 all of the boundary lies inside the
separatrix.

Then as the time step increases, the DAC shrinks. At a time step of fifteen the boundary of
the DAC lies well inside the separatrix.

From the DACs shown in Figure 6.6, we may draw an important conclusion: there exists
no necessary connection between, on the one hand, a DAC for a Taylor map (with the time
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7 real and held fixed) expanded in terms of the initial conditions in phase space and, on the
other hand, a domain of convergence for a corresponding solution (with real initial conditions)
given as a Taylor series expanded in terms of the time ¢. To see this, recall that a Taylor
series expansion in ¢ about ¢ = 0 has a domain of convergence determined by the distance
from the origin to the nearest singularity in the plane of complex time. Let us therefore write
the motion of the anharmonic oscillator in the form (¢f. (6.11))

(6.57) q" = gmsn(wm(t — t.)|m)

and examine the temporal singularities of this solution. As described in §A.2.1, poles of
sn(u|lm) occur whenever

(6.58) u=2uK(m)+i(2v+ 1)K'(m),

for any u,v € Z. Here K(m) and K'(m) denote respectively the complete elliptic integral of

the first kind and its cousin K (1 — m) (see (A.4) and Figure A.3). Then the complex times
mtx + 20K 2 1)K’

659) o Stet i (m) @0 K ()

Wm Wm

represent all the temporal singularities of (6.57).
Now consider just the (real) oscillatory motion of the anharmonic oscillator. In that case
the energy F and the parameter m satisfy respectively

1
0<E<Z and 0 <m < 1.

In addition, the constants w;, and t. and the elliptic integrals K (m) and K'(m) are all real.
Then, as expected in this case, no temporal singularity ¢,,, sits on the real ¢ axis. To determine
the distance to the nearest singularity in the complex time plane, first observe from (6.57)
that the constant ¢, controls the phase of the oscillator. Since we might start this dynamical
system with any value of the phase, only the imaginary part of ¢, matters; hence we obtain
from (6.59) the radius of convergence for a Taylor series solution (with real initial conditions)
expanded in the time t:

/ 2
(6.60) pe = B ! K’< 4m”/2 >
Wm \/1_Qm2/2 1_Qm2/2

Here we have used (6.6) and (6.8) to express t,s in terms of the maximum amplitude gy,
and Figure 6.7 shows this amplitude dependence of t¢,,;. Now observe that an amplitude of
gm = 0.5, for example, gives t,s ~ 2.578. In other words, when the amplitude equals 0.5, a
Taylor series expansion in ¢ for the motion of the anharmonic oscillator will converge only
for t < 2.578. On the other hand, Figure 6.6 shows that a Taylor series map expanded in
the initial conditions 2! = (¢, p’) will converge at an amplitude of 0.5 for a time step 7
as large as, even somewhat larger than, 15—mnearly an order of magnitude greater than the
temporal radius of convergence! Looking at this same data from a different angle, one may
note from Figure 6.7 that a Taylor series solution expanded in ¢ will converge for ¢t ~ 7 only
for amplitudes ¢, < 0.005—more than two orders of magnitude smaller than the maximum
amplitude allowed by the DAC of the time-seven Taylor map! Thus do we see, in a concrete
example, that for a given dynamical system the radius of convergence for a Taylor series
solution (with real initial conditions) expanded in the time has no bearing on the DAC of a
Taylor map expanded in the initial conditions (with the time T real and held fized).

In the above discussion we have made a distinction between two different ways of writing
a Taylor series solution for the anharmonic oscillator: either as an expansion in the initial
conditions, with 7 real and held fixed; or as an expansion in the time, with the initial con-
ditions real and held fixed. Furthermore, we have seen that their respective convergence
domains—one in the time, and one in the initial conditions—have no bearing on one another.
In one sense, however, the description given so far resembles a pair of photographs taken
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FIGURE 6.7. Amplitude dependence of the radius of convergence for Taylor
expansions in the time ¢.

from opposite sides of a convoluted three-dimensional object:'? Each picture gives us useful
information, but we cannot necessarily reconstruct the object from either of the two pictures
alone, or, in extreme cases, even from both pictures taken together. To see the whole of the
anharmonic oscillator, we must look at its motion in all of C3, the space of complex ¢, p’,
and t. The singularities that appear there in that larger space determine the convergence
domains for both types of Taylor series solutions we have examined. The differences that
appear arise as consequences of fixing either ¢ or (¢%, p') to real values and looking at Taylor
series solutions expanded in terms of the remaining complex variables.

From Figure 6.6 we may draw a second, equally important, conclusion: there exists no
connection between the separatrix and the DAC. The size of the DAC is determined not by
the size of the region of stability in the real part of phase space, but rather by the complex
dynamics of the system and the choice of time step 7. To make this same observation from
a slightly different point of view, refer back to Theorem 2.3. Because the right-hand sides of
the equations of motion (6.2) are analytic for all (g, p) € C2, Poincaré’s theorem tells us that
as long as the system does not reach infinity, the motion of the anharmonic oscillator will
be analytic in the elapsed time 7 and the initial conditions 2z = (¢%, p’). Since the motion is
analytic in 7, it follows that for arbitrary initial conditions 2%, one can always find a non-zero
time step 7 (possibly quite small) such that the system cannot reach infinity in the time
allotted. Put another way, one can obtain an arbitrarily large DAC—but at the cost of having
to use a small (perhaps microscopic) time step 7. Conversely, since the motion is analytic
in the initial conditions 2%, it follows that for an arbitrary time step 7, one can always find
an open set of non-zero initial conditions z* = (¢*, p’) (possibly quite near the origin) such
that again the system cannot reach infinity in the time allotted. In other words, one may use
an arbitrarily large time step T, but at the cost of having to make do with a small (perhaps
microscopic) DAC.

6.5. Taylor Series Map

One very efficient method for computing the coefficients of a Taylor series map to high
order employs the Lie algebraic techniques introduced in and used throughout Part IT of this
thesis. For an autonomous Hamiltonian system the technique boils down to series expanding
the exponential operator in the expression

(6.61) 2l = e T

12Indeed, the matter here seems far more subtle than the difficulties faced by the Flatlander A. Square in
his attempts to comprehend the sphere [1].
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Here z, denotes one of the dynamical variables—¢q or p in our case, 7 the desired time step,
and :H: the Lie operator associated with the system’s Hamiltonian H. (See §9, Appendix B,
and any of the references [25, 28, 30, 33].) The only difficulty with this technique is that
quadratic terms in H lead to an infinity of slowly converging terms of a given order. One
can refine (6.61) so as to avoid this difficulty by cutting the time step 7 by some power
of two, say 2", and then successively squaring the resultant Taylor map n times. For a
modest value of n, which will depend on the size of the time step 7 and the Hamiltonian
H, one can quickly (on a computer) evaluate to machine precision a truncated Taylor map
approximation to exp(—7/2":H:)z!. Then, after n squarings, we obtain the desired result
(6.61). This refinement is sometimes called “scaling and squaring” [29, 66].

Because the anharmonic oscillator involves just two phase-space variables, we can obtain
extremely high-order coeflicients with only a few minutes of computer time. Using TLIE2,
a modified version of the program TLIE [87], we determined the coefficients of Taylor maps
for the anharmonic oscillator at time steps 7 = 1, 7, and 15; and, for no particular reason,
we chose to compute those maps through order forty-seven. To verify their correctness, we
checked a few of the high-order coeflicients against numerical evaluations of the double contour
integral in (4.5b). The coefficients thus obtained—even using a crude method of numerical
integration—agreed with those given by TLIE2 to better than five significant figures. Much
earlier, in (3.3), we exhibited the first few coefficients of the Taylor map for time 7 = 7.

6.6. Estimated Domain of Convergence

Using the method described in §5.2, we can make a conjecture as to what a DAC looks
like based on the finite number of Taylor map coeflicients obtained in §6.5. Figures 6.8 and
6.9 show such conjectures for the anharmonic oscillator’s Taylor maps with time steps 7 = 1,
7, and 15. These results should be compared with the exact DAC boundaries shown in
Figures 6.5 and 6.6.
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FIGURE 6.8. This figure shows a conjecture for the DAC of the anhar-
monic oscillator’s time-seven Taylor map. This result was obtained using
the method of §5.2 with the order forty-seven truncated Taylor map coeffi-
cients found in §6.5.

For time steps 7 = 1 and 15, the curves in Figures 6.6 and 6.9 agree extremely well
with one another. In fact, for 7 = 1 we can see no visible difference between the two
graphs. However, a small but significant discrepancy does exist for 7 = 7. As illustrated in
Figure 6.10, the conjectured DAC for 7 = 7 agrees very well with the true DAC along only
part of the boundary. A comparison of our conjecture with all three of the singularities we
tracked indicates why this happens: Along the section where the conjectured boundary does
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FIGURE 6.9. In this figure we show conjectures for the DACs of the an-
harmonic oscillator’s Taylor maps for time steps 7 = 1, 7, and 15. As in
Figure 6.8 these results are based on the Taylor map coefficients through
order forty-seven.

not see the true boundary, it instead sees one of the other singularities; indeed, it follows
that other singularity very closely (see Figure 6.11). We computed numerically the residues
of these two singularities—the one followed by our conjecture and the one that bounds the
true DAC—and found that the pole which actually bounds the DAC has a residue that is
about sixty-three times smaller in magnitude than that of the pole seen by our conjectured
boundary (i.e., the one seen by the Taylor map coefficients through order forty-seven). From
this information we can make a rough estimate of the order at which the DAC conjectured
from the Taylor map coefficients will begin to notice the singularity that really bounds the
true DAC. Based on a pole of residue b at a distance R from the origin, we may estimate the
magnitude of the coeflicients in a Taylor series as roughly Rfﬂ 13 At the order where the
conjectured DAC boundary begins to notice the pole with the tiny residue, coefficients based
on the two different poles should be roughly comparable. Hence, since the two singularities
with residues b; and by ~ 63b; strike the ’pi’ axis in Figure 6.5 at radii of about R; = 0.707
and Ry = 0.755, respectively, we look for the order n which makes

b1 b2

n+1 — n+1-
Rl R2

This order is given by
ln(bg/bl)

" In(R2/R1) 1

)

13Consider the function gi1(z) = z—fc, ¢ # 0, which has residue b at ¢. Its Taylor expansion about the

origin has coefficients given exactly by a, = ;—fl Now consider a more general function g2(z), which also
has a pole of residue b at ¢ # 0. If all the singularities of g2 other than ¢ are farther from the origin than ¢,
one can, by a suitable choice of contour, use (5.1b) to show that the Taylor expansion of g2 about the origin
has coefficients given approximately by an =~ C;% for sufficiently large n.
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and for our present case we find n &~ 62. We therefore expect that the DAC conjectured for
the time-seven Taylor map will not begin to reflect the presence of the pole with the smaller
residue until we include Taylor map coefficients of degree at least sixty-two.
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FIGURE 6.10. A comparison between the DAC for the time-seven Taylor se-
ries map and the DAC conjectured from the Taylor series coefficients through
order forty-seven.
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FIGURE 6.11. A comparison between the singularities of the time-seven map
and the DAC conjectured from the Taylor series coefficients through order
forty-seven.

That the exact and conjectured DACs agree with one another tells us that in some sense
the Taylor map coefficients know about the singularities of the map. The reader should
not, however, think that any mystery attends this observation. Any undergraduate course in
mathematics that introduces the concept of Taylor series representations for functions of a
single variable discusses the connection between singularities and convergence radii; and they
also discuss how to determine convergence radii based on the series coefficients (albeit not
solely on a finite number of coefficients). In the discussion of the theory of functions of several
complex variables in §4.2, we learned that the DAC of a Taylor series map is determined by
the singularities of the corresponding transfer map. The striking agreement between the true
DACs shown in Figure 6.6 and the conjectured DACs in Figure 6.9 merely emphasizes the fact
that the Taylor map coefficients do indeed see those singularities—both real and complex.
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6.7. Accuracy of the Taylor Series Map

A finite domain of convergence of course has a very real effect on how we can use a given
Taylor series map. In particular, we should not expect a truncated Taylor map to work well
for points in phase space near the boundary of the DAC. For the anharmonic oscillator—
which we have solved exactly—we shall examine the effect of the finite DAC in two different
ways. Later, in Part IT of this thesis, we shall examine a different aspect of truncated Taylor
maps, and in that context we shall again examine the anharmonic oscillator (see especially
§17.1).

To examine the effect of a finite DAC on Taylor maps for the anharmonic oscillator, the
first approach we shall use compares the phase-space portraits generated by our truncated
Taylor map approximations with the exact phase-space portrait shown in Figure 6.2. Using
a map M7 that carries a dynamical system forward in time by an amount 7, and simply
iterating the equation (cf. (2.2))

(6.62) 2= M7
with the initial condition 2z = 2, we can determine the future state of that system at any
time ¢ that equals an integer multiple of the time step 7. By using (6.62) to track a few initial
conditions for many iterations, we can paint a phase-space portrait of the dynamical system
described by MT7.

Figure 6.12 shows, for the anharmonic oscillator, three approximate phase-space portraits
obtained by applying to several initial conditions 500 iterations of the order forty-seven trun-
cated Taylor maps for time steps 7 = 1, 7, and 15. The 7 = 1 portrait contains two initial
conditions that lie outside the separatrix, but all the other initial conditions lie on the ¢* axis
(p* = 0) with 0 < ¢* < 1. For 7 = 15 the phase-space orbits generated by the truncated
Taylor map agree well with the true phase-space orbits up to about ¢* = 0.50 (at least for the
500 iterations shown). Similarly, for 7 = 7 the orbits agree well up to about ¢* = 0.65. And
for 7 = 1 the truncated Taylor map generates an accurate phase-space portrait throughout
the region enclosed by the separatrix; moreover, the 7 = 1 map renders accurately even some
orbits (the large dots) that lie outside the separatrix.

Now recall the comparisons made in §6.6 between the true and conjectured DACs for the
anharmonic oscillator. Those comparisons taught us that the Taylor map coefficients do
indeed know about the singularities of the underlying transfer map. We can observe this
same fact reflected in the tracking results of Figure 6.12. There each of the order forty-seven
truncated Taylor maps—for 7 = 1, 7, and 15—produces orbits in phase space that agree well
with the exact orbits at points significantly inside their respective Taylor DACs. Furthermore,
it is obvious that the maps for 7 = 7 and 7 = 15 do not work outside their DACs; and, in
fact, those maps appear to work less well at points approaching their DAC boundaries (from
the inside). These last observations also hold for the 7 = 1 map, but to see them requires a
tool more precise than the tracking results.

Our second approach to examining the effect of a finite DAC on Taylor maps for the
anharmonic oscillator employs the more precise tool just referred to. Here we shall simply
measure the distance in phase space between the results of applying the exact and truncated
Taylor series maps once to the same initial conditions. In other words, we evaluate

(663) Az(qi,pi) = \/(QGfLE - Qtfay)2 + (pgw _p{ay)za

where (qu, pgx) denotes the result of applying the exact map to the initial point (¢%,p?) in

phase space, and (qtfay, p{ay) denotes the result of applying the order forty-seven truncated
Taylor map to the same initial condition. Figures 6.13-6.15 show, in the first quadrant of the
real (¢%,p') plane, four different contour levels of Az for each of the truncated Taylor maps
with time steps 7 = 1, 7, and 15. In all three figures the phase-space error Az changes by
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FIGURE 6.12. This figure shows the results of tracking the motion of the
anharmonic oscillator using order forty-seven truncated Taylor series maps
with three different time steps: 7 = 1 (top), 7 (middle), and 15 (bottom).
The large points in the 7 = 1 plot indicate orbits whose initial conditions lie
outside, but close to, the separatrix.

a factor of ten between adjacent contour levels, with Az = 10~* on the inner-most contour
and Az = 10~ on the outer-most contour.

Because all the terms in the Hamiltonian (6.1) for the anharmonic oscillator are even in
the dynamical variables, it follows that all the terms in the Taylor map are odd. As we
truncated the Taylor series after order forty-seven, the first terms neglected in the series are
therefore those of order forty-nine. Hence the phase-space error Az should increase at a rate
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FIGURE 6.13. Contour levels of the phase-space error Az for the anharmonic
oscillator’s order forty-seven truncated Taylor map with time step 7 = 1.
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FIGURE 6.14. Contour levels of the phase-space error Az for the anharmonic
oscillator’s order forty-seven truncated Taylor map with time step 7 = 7.

roughly proportional to r*°. The approximately uniform spacing between the contour levels
of Az reflects this power-law behavior, and a rough calculation confirms that the exponent
is indeed about forty-nine.

Now compare Figures 6.13-6.15 with Figures 6.5 and 6.6; i.e., compare the contour levels
of the phase-space error Az with the DACs for the Taylor maps. In each case—r =1, 7, and
15—as Az increases, the sequence of contour levels for Az approaches the boundary of the
DAC. This behavior provides further concrete evidence for the observation we made earlier
in §6.4.5: the domain over which a Taylor map converges is governed by singularities in the
complex phase space of the particular dynamical system.

The results in Figure 6.13 appear especially noteworthy: They show that the 7 = 1
truncated Taylor map gives accurate results even for a substantial region of phase space
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FIGURE 6.15. Contour levels of the phase-space error Az for the anharmonic
oscillator’s order forty-seven truncated Taylor map with time step 7 = 15.

outside the separatrix. In addition, the power-law behavior of Az indicates—and numerical
tests confirm—that the map returns results close to machine precision over a substantial
fraction of the stable region of phase space, inside the separatrix. For initial conditions
outside the stable region bounded by the separatrix, we cannot iterate the Taylor series map
more than a few times (or perhaps only once); nonetheless, as long as the result of one iteration
remains well inside the DAC, we can go on to perform the next iteration. The contour levels
of Az give us a measure of what constitutes “well inside the domain of convergence”.

6.8. Discussion

The reader who wishes to carry away just a few pieces of information about Taylor maps
from our example of the anharmonic oscillator should take the knowledge that the DAC for
a Taylor representation of a map depends on the singularities of the map as a function of
several (at least two) complex variables, and that there exists an inverse relationship between
the size of the time step and the size of the DAC. Moreover, these statements apply to many
dynamical systems. While this may seem obvious to some, it has been a source of confusion
to many. For example, Talman [86] investigated the suitability of truncated Taylor maps (or
differential maps) for doing tracking studies. In particular, he used truncated Taylor maps
of modest (seventh and ninth) order with a time step of 1.67 to track the motion of a simple
pendulum and compared the results obtained with the exact solution, which is known in
terms of elliptic functions. He observed that one can obtain accurate tracking results with a
modest order truncated Taylor map only for a limited number of iterations, and furthermore
that the number of accurate iterations decreases with increasing amplitude.

In a subsequent report that attempted to explain Talman’s results, Hagel and Zotter
[48] examined the motion of the simple pendulum by writing its solution as a Taylor series
expanded in terms of the time ¢. They pointed out—quite correctly—that the exact solution
for the simple pendulum has poles for complex values of ¢, and that therefore a solution based
on a Taylor series in ¢ will diverge for |¢| greater than the distance to the nearest singularity
in the plane of complex time. At an amplitude of 10°, the smallest Talman used, this distance
is about 1.27. Since Talman’s step-size was roughly 30% larger, Hagel and Zotter claimed
that the complex singularities in ¢ were responsible for the limited number of iterations for
which Talman obtained accurate results.
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Although we may need to know the locations of the complex time singularities in order
to address certain questions concerning the simple pendulum, the alert reader will recognize
that such knowledge does not, in fact, answer the specific questions raised by Talman’s data.
Recall what we have learned from our study of the anharmonic oscillator; recall in particular
the lessons learned in §6.4.5: (i) the singularities in the plane of complex time (for real initial
conditions) have no bearing on the Taylor map’s DAC; and (ii) we may choose any size time
step we wish (by giving up, if necessary, phase-space area in the DAC). These conclusions
were drawn from very general arguments based on Poincaré’s theorem and hence apply not
only to the anharmonic oscillator but also to a broad class of dynamical systems—including
the simple pendulum.

The motion of the simple pendulum, like that for the anharmonic oscillator, has an exact
solution in terms of elliptic functions. Therefore it too has singularities in the complex planes
of the initial conditions. For the simple pendulum, also, it then follows that any Taylor map
with a finite time step 7 # 0 contains a finite non-zero domain of phase space in its DAC. In
addition, as indicated by Figures 6.13-6.15 in §6.7, the accuracy of a given truncated Taylor
map degrades rapidly in the neighborhood of the DAC’s boundary.!* As a consequence, the
explanation for Talman’s results is not that he chose too large a time step; rather, his choice of
step size determined a DAC, and his modest order truncated Taylor maps could not produce
accurate results except for relatively small amplitudes.

We should note that even for very small amplitudes (~ 10°), Talman’s truncated Taylor
maps could not track the simple pendulum for more than a few thousand iterations. This
difficulty arises not only from the issues raised above, concerning the boundary of the DAC,
but also from the accumulation of errors that result from the truncated Taylor map’s violation
of the symplectic condition. We shall discuss this subject in Part II of this thesis.

The fact that purely complex singularities can affect the DAC for a Taylor series repre-
sentation of the map M resembles the behavior of, for example, the function 1/(1 + z?).
This function is perfectly well behaved for all real values of z; but, as everybody knows, its
Taylor series expansion about the origin converges only inside the unit circle. In addition,
this limited domain of convergence reflects the presence of complex singularities at © = +4.

Because of its importance, we make one last effort to underscore the fact that the obser-
vation just made holds also for Taylor maps of more than one variable—i.e., that complex
singularities in the domain of the initial conditions are indeed responsible for limiting the
DAC. To do this, examine what happens when we choose the sign 8 = 41 in (6.3), the
Hamiltonian for the anharmonic oscillator. In this case the system executes bounded peri-
odic motion for all real values of the initial conditions (¢%,p?); there is no separatrix. As a
consequence, the map M7 has no singularities in the entire real (¢, p*) plane. We must not,
however, be lulled into a false sense of security. Observe that making the replacements

q—1iq and p — p
transforms the equations of motion (6.4) for the anharmonic oscillator with 5 = +1 into the
same equations of motion with 8 = —1. In other words, one can transform between these
two systems—03 = +1—Dby making a simple rotation about each of the origins in the complex
planes of ¢* and p’. Since the DAC records only absolute values, it follows that the DAC
for the anharmonic oscillator does not depend on —i.e., it does not depend on whether the
quartic term is positive or negative! Hence the same convergence diagrams—Figures 6.5 and
T

6.6—apply to Taylor series representations of the two different transfer maps /\/l( B=+1) and
M7 .
(B=-1)

MNote that Figures 6.13—6.15 show the phase-space errors made by truncated Taylor maps of order forty-
seven. Taylor maps truncated at lower orders will not work as well.



7. SUMMARY I

In Part I of this thesis we have examined some analytic properties of transfer maps, with
a special emphasis on the convergence properties of Taylor series representations. We began
by showing that for a broad class of physical systems a few standard theorems from the
theory of ordinary differential equations not only justify the existence of transfer maps but
also delineate some basic properties of transfer maps. Of central import to our study is
Poincaré’s theorem (Theorem 2.3), from which follows most of our subsequent work. Using
Poincaré’s theorem and the properties of analytic functions in several complex variables, we
examined the convergence properties of Taylor series representations for transfer maps. In
particular, we showed that if a dynamical system has singularities in the complex planes of the
expansion variables, then a Taylor series representation for any corresponding transfer map
has a limited domain of absolute convergence; and, furthermore, the complex singularities of
the underlying dynamical system control the size and shape of that domain.

A principal lesson to learn here concerns the relationship between the dynamics of a system
under study and the domain of convergence of a corresponding Taylor map. Poincaré’s
theorem and the theory of functions in several complex variables together tell us that the
fundamental constraints on a Taylor series map for a given dynamical system arise from those
locations where the right-hand side of the equations of motion (2.1) fail to be analytic. As
illustrated in Figure 6.6 for the anharmonic oscillator, the presence of a separatrix poses
no fundamental difficulty. Instead, suppose we choose a fixed real 7 and obtain a time-7
map in the form of a Taylor series representation expanded in the initial conditions. Then
a singularity of the time-T map is any point z’ in the space of complex initial conditions
which travels to a singularity of the right-hand side of (2.1) in exactly time 7. These are the
singularities that limit the domain of convergence of a Taylor series map.

Experience teaches us to exercise caution when using large steps in time (i.e., the inde-
pendent variable) for a Taylor series map. In Part I of this thesis we have spelled out the
principles that underlie this intuition and have used the anharmonic oscillator as a concrete
example. Based on very general principles, there exists an inverse relationship between the
size of a time step 7 and the size of a corresponding domain of convergence. Within this
constraint, however, we may choose as large a time step, or as large a region in phase space,
as we please.

While this material is in principle well known to mathematicians, it has not previously
been applied in the field of accelerator physics. The new material in Part I of this thesis
comprises the explicit observations for a non-trivial dynamical system of the interaction be-
tween the singularities of the motion and the domain of absolute convergence for the Taylor
representation of the corresponding transfer map.
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Part II. Cremona Approximation of Transfer Maps






8. INTRODUCTION II

Because they illuminate a broad variety of physical phenomena, dynamical systems derived
from Hamiltonians form an important class of systems upon which we focus our attention.
For our purposes, the most significant characteristic of Hamiltonian systems is that they obey
the symplectic condition. Consider a transfer map M, as defined by (2.2), derived from some
Hamiltonian system. The Jacobian matriz M at the point z°, which has entries

o

0
(81) Mab(z )_ 8211) 207

represents the linear part of M at z° and describes the effect on zf of small variations in z°
about the point 2°. For a Hamiltonian system with n degrees of freedom the corresponding
phase space has dimension m = 2n; and the points in phase space may be labeled by z =
(21 2ZnyZnt1---22n) = (@1 ---Gn,P1...pn), where the ¢; and p; denote respectively the
coordinates and their conjugate momenta. Using this ordering of the phase-space coordinates
Zq, we define the 2n x 2n matrix

(8.2) J= (_? é) ,

where I denotes the n x n identity matrix, and 0 denotes the n x n zero matrix. Then for
any Hamiltonian system, the Jacobian matrix M satisfies

(8.3) MM (%) =T 20,

where M denotes the transpose of M. This requirement is called the symplectic condition.
Furthermore, any map M whose Jacobian matrix satisfies (8.3) is called a symplectic map
[30].

In the Taylor series representation (3.1) of a map M, the symplectic condition comprises
a set of non-linear relations between Taylor series coefficients of different orders. As a con-
sequence, the act of truncating a Taylor series map—which amounts to setting to zero all
coeflicients beyond some order—generally breaks the symplectic condition. For some ques-
tions one might ask, this symplectic violation does little harm. For other questions, however,
such as those that concern the stability of the motion, numerical experiments have demon-
strated the importance of preserving the symplectic condition. Indeed, such experiments have
shown that the serious errors which arise during iteration of a truncated Taylor map often
stem from the violation of the symplectic condition rather than from the loss of information
stored in the truncated higher-order terms [34]. We emphasize that the most one can hope for
is that carrying a given Taylor series map to higher order will increase the number iterations
for which it produces useful results—and after which trouble is encountered. In other words,
computing a Taylor map to higher order may alleviate the symptoms, but it cannot cure the
disease!

To address questions about the long-term stability of a dynamical system, one must use
maps that obey the symplectic condition, i.e., symplectic maps. However, as indicated earlier
in §1, the map extracted from a dynamical system often takes the form of a (non-symplectic)
truncated Taylor series map. Because the violation of the symplectic condition is far more
serious than the loss of high-order terms, one may hope for a procedure that symplectifies a
Taylor map by adding high-order terms that are, in some sense, as small as possible. In an
ambitious moment, one might also insist that the resulting map be quick to compute. Here
in Part IT of this thesis we describe just such a procedure. Since the resulting map has the
special form of a Cremona map, we refer to our procedure as Cremona symplectification of
Taylor maps.

In the next two sections we describe the factored-product representation of symplectic maps
and the jolt representation of Cremona maps. The conversion to Cremona maps depends on
a process we call jolt decomposition and uses the concept of sensitivity vectors. We discuss
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these matters in §11 but relegate to Appendices B and C the remaining particulars of how
to convert between the Taylor series, factored-product, and jolt representations of symplectic
maps. In §12 we show how one can compare different possible jolt decompositions by using the
eigenvalues of the Gram matrix built from the sensitivity vectors. In §13 we determine which
linear transformations affect the process of jolt decomposition. The search for an optimal
decomposition then leads very naturally, in §§14-15, to an investigation of jolt decomposition
in the continuum limit. We then show, in §16, how the use of numerical quadrature (cubature)
formulas allows one to return to the discrete case while retaining an optimal decomposition.
At the end, in §17, we apply the methods described to some maps of physical interest, and
then, in §18, we summarize our results.

The material in §§8-10 is largely review—save for the new concept of jolts in §10.1, the
inner product introduced in §10.2, and the generality of the presentation in §10.3. And save
for the group-theoretical results and cubature formulas drawn from referenced literature—all
the material in the remaining sections is new.



9. SYMPLECTIC MAPS AND THE FACTORED-PRODUCT REPRESENTATION

Because of the importance of the symplectic condition for Hamiltonian systems, we would
like a convenient method for representing and working with symplectic maps. Lie transfor-
mations provide just such a method [30].

9.1. Lie Operators and Lie Transformations

For a Hamiltonian system with n degrees of freedom, we usually label the points in the
corresponding 2n-dimensional phase space by z = (21,...,2n, Znt1,---s22n) = (q1,- -+, Gn,
P1,---,Pn). For convenience we sometimes refer to both the codrdinates ¢; and their conjugate
momenta p; as dynamical codrdinates. In addition, we refer to any function on phase space,
f(2), as a dynamical function or, occasionally, as a dynamical variable. By extension, if f is
also a polynomial, we refer to it as a dynamical polynomial.

Given any dynamical function f, we define the associated Lie operator :f: by the rule

(00 of D
©-1) 4= Z(a% dpi  Op; 6Qi>.

i

In other words, one computes the action of the Lie operator : f: on any dynamical variable g
by evaluating the Poisson bracket of f with g:

(9.2) frg=1[f.g].

We then define powers of : f: very naturally by the composition of operators. Thus,
P9 =11 9) = [f,[f: 9]l

For completeness we also define : f:° as the identity operator.

Given powers of : f:, one may then discuss power series in : f:. We define the Lie transfor-
mation associated with f as the very special power series

(9.3) et =exp(:f:) = Z%:f:k.
k=0 "

Lie transformations have the wonderful feature that they provide an endless supply of sym-
plectic maps. Thus, for any dynamical function f, the transformation defined by

(9.4) 2l =efizl
has the form (2.2) with M a symplectic map.
9.2. Important Properties and Notational Matters

Before continuing our discussion of symplectic maps, we note (without proof) some im-
portant properties of Lie operators and Lie transformations. With respect to ordinary mul-
tiplication of functions, Lie operators act as derivations:

(9.5) :fi(gh) = (:f:9)h + g(:f:h).
It follows from (9.5) that, with respect to the same multiplication, Lie transformations act
as isomorphisms:

(9.6) e (gh) = (T g)(e D).

The analogous properties hold for Lie operators and Lie transformations with respect to
Poisson bracket multiplication of functions:

(9.7) :filg Wl =[:f:9,h] +[g,:f: 1],
(9.8) e:f:[g, h] = [e:f:g,e:f:h].

(That Lie transformations generate symplectic maps follows directly from (9.8).) Another
property concerns the action of Lie transformations on Lie operators:

(9.9) elfigr=eltgie
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Speaking most properly, we must say that Lie operators and Lie transformations act on
dynamical variables. However, little confusion results if we sometimes treat them as acting
directly on phase space. Thus, instead of writing (9.4) for each a € {1,...,2n}, we often
abuse the notation to write more simply

(9.10) 2 = el

)

It follows from (9.6) that we may, in this vein, write the action of a Lie transformation, e/ (*)
on a dynamical function, g(z), in the form

(9.11) elig(z) = glez).

In much of our subsequent discussion, we shall place a subscript on a dynamical function
to indicate that it represents a homogeneous dynamical polynomial of a certain degree. Thus,
we use fi (sometimes generically) to denote a homogeneous dynamical polynomial of degree
k. Using this notation and the definition (9.2), we can easily determine that Lie operators of
the form :fo: and Lie transformations of the form e'/2* preserve the degree of the functions
on which they act. In particular, the Lie transformation /> acts linearly on phase space.
We shall therefore often use a matrix representation for e'f2*’s: thus,

(9.12a) ez, = Rl z,
b

or, in matrix form,
(9.12b) efz =Rz,

Notice that R must, of course, obey the symplectic condition (8.3). In other words, R must
be a symplectic matriz.

An important consequence of our decision to put the matrix representation of an e'/?* in
the form (9.12) is that linear Lie transformations and their corresponding matrices act in
opposite orders. To see this, note that

e:f2:e:g2:2a — e:f2: (Z szzb) _ Z sz e:fgzzb
b b
= Z Ry, (R'ZI:CZC) = Z(Rng)ach’
be

C

(9.13a)

or, in matrix form,
(9.13b) el ez = (RIRT) 2.

Now suppose L(R) denotes the linear symplectic transformation corresponding to the matrix
R. Then, according to (9.12b) and (9.13b),

We therefore obtain the general result
(9.15) L(R1R2) = L(R2)L(Ry).

Observe carefully the change in the order of the factors. Note also another obvious conse-
quence of (9.14):

(9.16) L(R™Y =[L(R)] .
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9.3. The Factored-Product Representation

Observe that when f denotes a dynamical polynomial, one can use the exponential power
series (9.3) to convert a symplectic map of form (9.4) into a Taylor map of form (3.1).
However, since we often have a Taylor map at hand, we would also like to “go the other
way”. The following theorem addresses this matter and, in the process, defines the very
useful factored-product representation, (9.17), for symplectic maps [33].

Theorem 9.1 (Factorization Theorem). If M is any symplectic map having a Taylor series
representation, (3.1), then M may be written uniquely in the factored-product form
(9.17) M = efrigilzigfeigifaigifa.

where each fr denotes a homogeneous polynomial of degree k in the variables z*. Moreover,
the quadratic polynomials fs5 and f$ have the special form

1
f2 - _5 stab Za”by

where S denotes a symmetric matrixz. For fs, the matriz S commutes with the matriz J of
(8.2); and for f¢, S anti-commutes with J.

As a representation for symplectic maps, (9.17) has many virtues; we list two of the most
important:

e Each Lie transformation has a well-characterized content. The factors e//1* and e/
generate respectively constant and linear terms in the Taylor series (3.1), while the

remainder, ef3'ef1i...  generates non-linear terms. In particular, e/’ generates
terms of quadratic and higher order, e'f4' generates terms of cubic and higher order,
and so on.

e The various fj’s have independent coefficients; indeed, we may often label individual
coeflicients according to specific traits they represent in the overall map. This means,
in addition, that maps in factored-product form require far less computer memory
than maps in Taylor series form. Furthermore, even if we have an imprecise knowledge
of the coefficients, the resulting map, (9.17), remains symplectic.

An important feature of the factored-product representation follows from these two virtues.
Suppose, as is usually the case, that we know the Taylor series coefficients only through some
finite order, say P —1; then we can determine the factorization (9.17) only through the factor
e/, (Appendix B describes an order-by-order procedure for constructing the polynomials
fx.) As each succeeding factor in (9.17) contains information of increasingly higher order, it
seems reasonable, from a perturbation theory point of view, to terminate that product after
the order of interest. We then write the truncated product as

(9.18) Mp = elvigfeiefaigifs . oifr:,

Now note that truncating the product is equivalent to setting fi = 0 for all £ > P. Because
of the virtues listed above, the map M p—a truncated product of Lie transformations—
represents a symplectic approximation to the original map M.

The factored-product representation, (9.17), does, however, share the same principal draw-
back as the Taylor series representation, (3.1): evaluating the action of most Lie transfor-
mations, (9.3), requires summing an infinite series. Even computing the result to machine
precision on a computer requires excessive amounts of time for studies that demand repeated
iterations of the map. Therefore, despite the many virtues of (9.17) for representing symplec-
tic maps, we seek an alternative representation which can be computed quickly. This leads
us to the subject of Cremona maps and their jolt representations.

Before going on to discuss Cremona maps, we make two final comments about the factored-
product representation, (9.17). The factor e:/1* generates simple translations; these can always
be computed exactly. The factors e'/2* and e'/2* generate linear transformations; these can
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always be represented by matrices and computed to machine precision. As these first factors
present no difficulty, we shall devote our attention to the remaining, non-linear, part of the
map, which we write as

(9'19) ./\/'Zetfaze:f‘l:"' .

In actual practice, we shall devote our attention to the truncated product version of (9.19),

which we write as

(9.20) Np = efs . eifrr



10. CREMONA MAPS AND THE JOLT REPRESENTATION

We assign the adjective Cremona to any map which is both symplectic and polynomial.®
Our interest in Cremona maps stems directly from their definition: as they are symplectic, we
can use them to approximate the behavior of Hamiltonian systems; as they are polynomial,
we can compute them rapidly and exactly.

10.1. Kicks, Jolts, and their Associated Maps

Since any linear symplectic map is also a polynomial map, we know that an infinity of
Cremona maps exists. That an abundance of non-linear Cremona maps exists is only slightly
harder to demonstrate. First define a jolt as any dynamical function g that satisfies the
condition

(10.1) 922, =0 VYaec{l,...,2n}.

Then according to (9.3), the associated Lie transformation generates the map

(10.2) 2l =9 =2 4igi2l =20 4 g, 2],

which we call a jolt map. Next note that for any dynamical polynomial g that satisfies (10.1),
the corresponding map, (10.2), will be polynomial; hence, because Lie transformations always

produce symplectic maps, polynomial jolts generate Cremona maps. Now notice that any
function of the coodrdinates alone,

(10.3) 9=y9(¢"), with ¢" = (q1, ... ),
satisfies (10.1), so there do indeed exist an abundance of non-linear Cremona maps.
Observe that if a function g has the special form (10.3), then the corresponding jolt map,
(10.2), affects only the momenta. Such maps are called kick maps, and we refer to the
generators, (10.3), as kicks. Thus, jolt maps represent a generalization of kick maps.
To see that there exist jolts which are not kicks, employ the identity (9.9). Using L to
denote the Lie transformation e'/*, we obtain

(10.4) Lg?=(L:g LY =L:g: L7 Log LT =Lg2 L7

Now notice that if £ denotes a linear symplectic map—an e/2*—then the action of £ on
z (and therefore also of £~ on 2) produces a linear combination of the z,. We conclude
from (10.1) and (10.4) that if g is a kick, then Lg(q) = g(Lq) = g™ (z) is a jolt. The
corresponding jolt map has the form

(105) e:ﬁg: _ eﬁ:g:£71 _ Ee:g:ﬁ_l.

Thus can one build many possible Cremona maps using only linear symplectic transformations
and kick maps.

10.2. The Vector Space of Dynamical Polynomials
One can show, by a combinatorial calculation, that [30]
_ [ the number of monomials | _ (I+d—-1\ (I +d—1)!
(10.6) M(i,d) = { of degree [ in d variables } o ( l > od=D
In the vector space of dynamical polynomials let us introduce a set of general monomials of
degree [:
Tn+41
1

T, .. g"n ...pl2n
(10.7) GO (2) =GV (q,p) = 4 4n" P 25 7

T T ] |
T T2n:

L5SMoser [68], Engel [36, 37], and Keller [54] have employed the eponymous term Cremona in their studies
of polynomial maps which carry the plane into itself and have unit Jacobian determinant. Such maps are
automatically symplectic [30]. We have extended the use of the term Cremona to denote symplectic polynomial
maps of R?” into R2". The Ttalian mathematician Cremona [21] studied bi-rational mappings in the context
of what is now part of the subject of algebraic geometry [80, 82].
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where r1 +- - -+7rg, = [. Although each monomial is determined by the collection of exponents
{r1,...,72n}, we label the monomials (10.7) of degree | by a single index r that ranges from

1to M(l,2n). By Q;ﬂl) we shall denote those general monomials which contain only ¢’s: thus,

k1 k
10.8 ==,
where k1 + - -+ k, = [. As with the general monomials, we use a single index k to label the
g-monomials of degree [; hence k ranges from 1 to M(I, n).

Let us also introduce in the space of dynamical polynomials a (very special) inner product
(,) defined by

(10.9a) (GO, GY)Y = 56

In words, the GV (and therefore also the Q;ﬂl)) are orthonormal with respect to this inner
product. We observe that the Gg) form an orthonormal basis for all dynamical polynomials.
In a like manner, the Q,(cl) form an orthonormal basis for all polynomials in the ¢’s alone. Now
suppose we have two dynamical polynomials f =", flTGgl) and g =", gergl). Then we
extend the inner product (10.9a), in a natural way, to the entire vector space of dynamical

polynomials by defining
(10.9D) (fr9) = firgur,
Ir

where the * means “take the complex conjugate”.

An important feature of the scalar product defined by (10.9) is that any transformation
belonging to the U(n) subgroup of Sp(2n,R) leaves this inner product unchanged [30]. In
symbols this means

(Lf Lg)=(f9)

for any £ in the U(n) subgroup of Sp(2n,R). Using LT to denote the Hermitian adjoint of £
with respect to this inner product, we find

(10.10) (fr9)=(Lf,Lg)=(fL"Lg)
for any f and g. Hence
(10.11) Lr=rc7%

thus any element of the U(n) subgroup of Sp(2n,R) is unitary with respect to the inner
product (10.9). We shall see later the value of this feature.

For future reference we record here the Hermitian adjoints of the Lie operators associated
with the quadratic basis monomials for the space of quadratic dynamical polynomials [30]:

qjan:t = —ppi,
(10.12) Pk = —iqiq,
ok’ = qupy:

10.3. The Jolt Representation

We turn now to a description of the jolt representation for approximating a given Taylor
map with an appropriate Cremona map.

Suppose we obtain for some Hamiltonian system a truncated Taylor series map 7, with
coefficients through order P — 1. As shown by the factorization theorem, Theorem 9.1, we
can obtain from 7, a symplectic approximation M in the form (9.18). Our goal, Cremona
symplectification, is to approximate the non-linear part of this map, the Ap of (9.20), by a
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Cremona map written as a product of N jolt maps of the form (10.5). Appendix C describes
an order-by-order procedure for converting the map N into the form

(10.13) Tp =L L0 Ly L3}

in such a way that the polynomial expansion of Jp2! agrees with the Taylor series expansion
of Npz! through terms of order P —1. We use the symbol ~ to indicate this agreement; thus,

Appendix C also describes how to do the conversion in the other direction, i.e., how to convert

a given Cremona map Jp into the corresponding factored-product map Nop.
The kicks ¢’ in (10.13) have the special form

P M(l,n)

i1 1 OPN0)
1=3 ’ k

=1

where N denotes the number of jolts, M(l,n) is given by (10.6), and the BJ(Q represent a
set of jolt strengths that depend on the specific map Np of (9.20). The procedure given in

Appendix C shows in particular how to determine the ﬁJ(Q using a knowledge of the map
Np together with a given, appropriately chosen, set of linear symplectic transformations L;.
The £; must therefore be chosen in advance; indeed, we shall focus much of our attention in
Part II of this thesis on how to choose a set of £, so as to represent as closely as possible any
given non-linear symplectic map Np as a Cremona map using the jolt representation Jp of
(10.13).

Before closing this section, we make a few observations about the set of all Cremona maps
that can be represented as a product of simple jolt maps of the form (10.5). These maps,
by design, are inherently symplectic and can be evaluated rapidly. They are also defined
everywhere, so no question arises concerning a domain of convergence. In addition, as these
maps have obvious inverses of the same form, they constitute a group. The jolt representa-
tion (10.13) therefore offers a number of useful features for approximating symplectic maps.
However, one potential difficulty may arise. By construction, the polynomial expansion of Jp
agrees with the Taylor map for N through terms of order P — 1; the higher order terms, on
the other hand, may have very different coefficients. Indeed, those coefficients arising from
the jolt representation can be so large as to render the resulting Cremona map useless. By
properly choosing the set of linear symplectic transformations £,,..., Ly, we aim to avoid
such offensively large high-order coeflicients.



11. JoLT DECOMPOSITION OF HOMOGENEOUS POLYNOMIALS

Suppose we have a homogeneous dynamical polynomial of degree I:
M(l,2n)

(11.1) =Y dcW.

r=1

If we can find a set of IV linear symplectic transformations, £., and a set of coefficients ag.lk)

3

such that

1 N M(ln) o 0
11.2 h)j=—— E E ! E-Ql
( ) l 7\]7‘[(1771) = = a]k J %k

then, because each term in (11.2) is a jolt, we say we have found a jolt decomposition of h;.
If we can use the same set of £; to obtain jolt decompositions for two or more dynamical
polynomials, then we say we have found a simultaneous jolt decomposition. The principal
challenge to realizing a Cremona approximation for some symplectic map, Np, involves find-
ing a simultaneous jolt decomposition for any given set of homogeneous polynomials of degree
1 € {3,4,...,P}.'% Although one could, in principle, choose a different set of L for each
map or collection of h;, that is not a useful approach. As we shall see, finding a good set of
L; compares to finding a needle in a haystack. We would instead like to find and announce
one set of £, that is in some sense optimal and works for any collection of h;’s with degree
I<P.

To see how one can obtain a jolt decomposition of a dynamical polynomial A;, first note that
one can extract the coefficients of (11.1) by using the inner product of (10.9) and projecting

h; onto the monomials G&l): thus,

D =(GY, 1y).
Inserting (11.2) in this expression, we obtain
N M(i,n)

n_ W wy_ 1 W -
(11.3) V) = NM{n) @ik <G£)a£ij )= NM(, n) E :ajkajkv
) . ! jk

where we have defined the quantities
(11.4) oh = (GO, L,Ql)y.
We shall treat the subscript, jk, as a “single index” and view the oJ; as the entries of a
vector in a vector space V! of dimension N x M (l,n). The superscript, 7, labels the different
vectors, which we call sensitivity vectors. (Although the o also depend on the order I, we
have suppressed the desire to add another index. Still, this imprecision should present no
difficulty to the reader.) In addition, we use a® to denote the vector in V! having entries
ag-lk). Introducing an inner product in V!, {,}, which includes a factor of 1/[NM(Il,n)], we
can now write (11.3) in the (more compact) form
(11.5) W ={o"aW}; r=1,2,...,M(l,2n).

According to (11.5), any part of a® that contributes to the cg) must belong to the subspace
of V! spanned by the sensitivity vectors. We therefore make the ansatz

M(l,2n)
(11.6) W = Z aWos,
s=1

16 The essential idea here—that of finding decompositions of the form (11.2) for homogeneous polynomials
and then using an order-by-order procedure to convert a given symplectic map into a polynomial symplectic
map—was first developed by John Irwin [51]. Although he considered only a restricted class of Ej’s, his ideas

inspired our work. The formulation developed here is completely general.
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where the ol denote a set of as yet undetermined coefficients. Inserting (11.6) into (11.5),

we obtain
(117 & = Yo" " Yall) = 3T

The quantities T'(1),s, defined by
(11.8) I'l)ps ={0",0°} = —— NM ZUJk

denote the entries of the (real symmetric) Gram matriz formed from the sensitivity vectors.
For future reference, we note that because the sensitivity vectors are real, we may write the
Gram matrix elements explicitly as

(119 T ={o" ()} = iy 2 (G0 L,00) (2,01 60).

jk
In matrix notation (11.7) reads ¢ = T'(1)a?; hence, we can solve for
(11.10) oV =1(1)" W

if the Gram matrix I'(l) is invertible. We can then use (11.6) and (11.10) to obtain the jolt
strengths:!”

(11.11) aly) = Z QIO

Our solution for the jolt strengths, (11.11), depends upon the Gram matrix being invertible.
As the definitions (11.4) and (11.8) show, the sensitivity vectors ¢”, and hence also the Gram
matrix I'(1), depend only on the choice of the linear symplectic transformations L;. This
observation provides us with the sine qua non for choosing the £;: they must produce a
non-singular Gram matrix.

1TWe initially defined the jolt strengths as the coefficients BJ(Q in (10.14). As there exists an intimate

relationship (c¢f. Appendix C) between these ,6( ) and the a(l) of (11.2), we apply the name jolt strengths to
both.



12. OPTIMIZING THE DECOMPOSITION

As we shall discuss later, in §16.1.2, we have found that even randomly chosen sets of
linear symplectic transformations £; stand a modest chance of producing non-singular Gram
matrices. On the other hand, we have found that such random Ej’s stand an excellent
chance of producing terrible Cremona approximations. We therefore wish to know what other
requirements should a set of £, satisfy in order to yield good Cremona approximations?

12.1. Jolt Strengths and Gram Eigenvalues

To aid our query, let us examine the action on z, of two jolt maps of the form (10.5). On
using (9.3) and (10.1) to expand the exponentials, we obtain

610" a" 2, = 019" (2 4 [Lo0%, 7))

(12.1)
= Za + [‘Clglv Za] + [‘62927 Za] + [‘Clglv [‘62927 ZU«]] +oee

(This series must, of course, terminate.) Observe that if the kicks g' and g2 have the form
(10.14), then the first three pieces of this sum contain terms of degree P — 1 and lower, while
the next piece contains terms of degree 3 through 2P — 3. (Recall that P > 3.) If (12.1)
represents a Cremona approximation to some Taylor series map whose coefficients are known
through order P — 1, then the terms in (12.1) with degree less than P must, by construction,
agree with the Taylor map. However, the remaining terms, which arise from multiple Poisson
brackets, generally differ from the Taylor map. In fact, as indicated at the end of §10.3,
those terms may make ruinously large contributions to the Cremona approximation. By
comparison, if the Taylor map we start with accurately represents some true map of interest,
then those high order Taylor series terms must (in some sense) be small.

Based on the observations of the last paragraph, we formulate a further requirement for the
linear symplectic transformations, £;: choose the set of £; so as to minimize the high order
terms that arise from such multiple Poisson brackets as appear in (12.1). To see how one might
approach this goal, consider expanding [£,g', [£59%, z4]] by using the expression (10.14); the
result involves products of the various jolt strengths describing g* and g2. We conclude that
minimizing the size of the jolt strengths constitutes one (rather crude) method for reducing
the possibly damaging high order terms. We shall therefore frame our requirement for the

L, in the following fashion: choose the set of £; so as to minimize the length of the vectors

whose entries are the jolt strengths—the a) of (11.2).

In making the ansatz (11.6), we have already taken one step towards minimizing the jolt
strengths a®: adding to oY) any component not in the space spanned by the ¢” can only
make the a() longer. To reduce further the size of the a(¥), note that in the vector space V*
we may use (11.6), (11.8), (11.10), and the symmetry of I'(l) to express the squared length
of ¥ in the form

(0,00} = Y al{e" 0*}ad = 3~ alT(1)sa)

= (I‘(l)a(l),a(l)) = (c(l),l"(l)flc(l)).

(12.2)

Now notice that because the Gram matrix I'(l) is real symmetric, it can be diagonalized by
a real orthogonal transformation, it has real eigenvalues, and it has a set of real orthonormal
eigenvectors. In addition, the Gram matrix is positive: Consider any set of coefficients 67(«”,
and define the vectors b") in analogy with (11.6); thus,

b = 3" o,

Then we obtain

BV, r0)pY) => " pIT(0),,sY = (0,0} > 0.

rs
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Furthermore, if T'(1) is invertible—as we require—then I'(]) is positive definite; hence, the
eigenvalues are all positive.

Let /. r e {1,...,M(l,2n)}, denote a set of orthonormal eigenvectors for T'(l); and let
)\Q) denote the corresponding eigenvalues. As the x,« form a basis, the vector ¢() has an

expansion of the form
o = 300,

T

We can use this expansion to place an upper-bound on (12.2):

{a(l)7 a(l)} _ (c(l),F(l)*lc(l)) — ng)égl) (Xgl), I‘(Z)*lxgl))
=3O 0D < SO0, = (@, D) /A,

Here we use the fact that T'(I)~! shares the eigenvectors of I'(l)—but with reciprocal eigen-

values; and we use /\gn)m to denote the smallest eigenvalue of T'(l). Now observe that (11.1)

and (10.9b) allow us to rewrite (12.3) as

(12.3)

(he, )
RO

min

(12.4) {a, 0} <

Since (hy, i) is fixed, (12.4) says that any jolt decomposition of the dynamical polynomial,
hy, yields jolt strengths, a(¥), which have an upper bound proportional to the reciprocal of the
smallest Gram eigenvalue. We can now express our requirement for the £; in the following
modified form: choose the set of L; so as to make the smallest Gram eigenvalue as large as
possible.

12.2. The Gram Operator

Before going on to discuss which £; are relevant to our needs, we introduce an additional
concept—that of the Gram operator.

Recall that the monomials G\ are orthonormal with respect to the inner product (10.9)
and form a basis for the space of f;’s, the space of dynamical polynomials of degree I. Now
suppose we find another set of such functions, w,(,l): another basis for the space of f;’s which
is also orthonormal with respect to the inner product (10.9). Then in the space of f;’s we
may write the identity operator in the dyadic form

> )],

Let us insert this form of the identity into (11.9) in two places: after the G and before the
G(l) We obtain the expression

T(0rs = Frz 2 2 (G0 i) 2,005,000, 60).

jk vv’

Because both the Gg) and the 1/1,, represent orthonormal bases for the same space, the matrix
connecting them, which has elements <G$f), ,(,l)>, must be unitary. Denoting these matrix

elements U,.,, we may write the Gram matrix in the form

1
(12.5) T ZUW<NM(I )Z<1/),§l>,LjQ,ﬁl>><£jQ,il>,1/}§l)>> Ut

1274 ik

Now observe that the quantity inside the large parentheses of (12.5) represents the entries of
a new matrix I'(]) obtained from the Gram matrix I'(l) by a unitary similarity transformation:

() =UrU'.
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Also notice the resemblance between the matrix entries I'(1),s of (11.9) and the matrix entries
['(1),. in the expression (12.5). Because our interest in the Gram matrix will focus on its
eigenvalues, and because I'(I) and T'(/) have the same eigenvalue spectrum, the matrices T'(l)
and T'(]) are equivalent for our purposes, and we shall make no essential distinction between
them. The comparison of (11.9) and (12.5) therefore suggests that we simplify matters by
introducing a Gram operator written in the dyadic form

(126) 0 = >1e,a )80 = N oLl @il e
Using this operator, we may write mjore simply ]

T = (GIEO)]GL),
and

T(D)r = (DT80

In other words, as long as we apply to the Gram operator f(l) orthonormal bases for the
space of f;’s, we will obtain equivalent representations for the Gram matrix I'(l).

To complete this section, let us introduce one additional bit of notation. According to
(12.6), we may write the Gram operator in the form

(12.7a) () = %Zf(j,l),
J
where
N QNI
(12.7b) Y60 = 370 ;‘Cj Q)@ £,"

Note that both f(l) and f(j, [) are Hermitian operators. We shall describe later, in §13.3,
another important property of the partial Gram operator I'(4,1).



13. THE SPACE OF RELEVANT L‘j

The space of all linear symplectic transformations that act on a 2n-dimensional phase space
constitutes an important Lie group denoted Sp(2n,R) and called the symplectic group. In the
process of searching this space for a set of IV such transformations £; that meet our criteria,
we encounter an immediate difficulty: Sp(2n,R) is not compact [20, 30]. To avoid searching
the whole of this infinite space, we shall look at whether or not we can limit ourselves to a
smaller (preferably compact) subgroup or subspace.

13.1. Avoiding Redundancy

In our effort to ascertain which linear symplectic transformations matter, let us look first at
the requirement that the Gram matrix I'(!) made from the sensitivity vectors o” be invertible.
According to standard matrix theory, a Gram matrix is invertible if and only if the vectors
used to construct it, in our case the o”, are linearly independent. Since there are M (l,2n)
such vectors, and since they belong to an (N x M (l,n))-dimensional vector space, linear
independence means that

(13.1) M(l,2n) < NM(l,n).

This relation implies a lower bound on the number of jolts needed to ensure that the jolt
decomposition (11.2) holds for [ € {3,4,...,P}. For the Gram matrix I'(!) to be invertible
for all these values of [, it follows that the number of £; we need, N = N (P,n), must be an
integer that satisfies the inequality

(13.2) N(P,n) > M(P,2n)/M(P,n).

We list in Table 13.1, for various values of P and for n = 1,2, and 3, the smallest values
of N(P,n) consistent with (13.2). As we shall see later, in the case n = 1 and P even we
can meet these lower bounds. In the case n = 1 and P odd and in the cases n = 2 and
n = 3, however, we must usually exceed these lower bounds in order to increase the smallest
eigenvalue A\, of the Gram matrix I'(1).

The condition (13.1) is necessary but, of course, not by itself sufficient to guarantee the
linear independence of the ¢”. Consider the NM (I, n) x M(l,2n) matrix whose columns are
the sensitivity vectors, (11.4):

<G§l)a £1Q§Z)> e <G§\le)(z,2n)=£1Q§l)>
l l l l
(13.3)  (oh,0% ..., oM020) (@, 0Q) - (G £1QY)
<G§l)7£NQ§\l/}(l,n)> e <G§\l/}(l,2n)’£NQ5\l/}(l,n)>

In order for the 0" to be linearly independent, this matrix must have maximum rank, M (I, 2n).
We now make the following observation: Suppose £, denotes the identity transformation and

L, denotes a transformation that converts any g-monomial, Q;ﬂl), into a linear combination
of g-monomials. Then each row of (13.3) that contains an £, will be a linear combination
of the rows that contain £;. More generally, if £; and £; denote any two transformations
that mix the g-monomials only among themselves, then the £, and £; rows of (13.3) will be
linearly dependent. We shall avoid such unnecessary redundancy.

We also address another, somewhat more subtle, form of redundancy. Consider again the
fundamental jolt decomposition (11.2). Let us replace there the symbol L; by the symbol
L(R;), where, as in (9.14), R; denotes the symplectic matrix corresponding to the linear
symplectic transformation £;. Now suppose each R; has a factorization

(13.4) R; =W, -Uj,
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TABLE 13.1. Lower bounds on N(P,n) as determined by (13.2).

n=1 n=2 n=23
P M(P,2) M(P,1) N(P1) M(P,4) M(P,2) N(P,2) M(P,6) M(P,3) N(P3)
3 4 1 4 20 4 5 56 10 6
4 5 1 5 35 5 7 126 15 9
5 6 1 6 56 6 10 252 21 12
6 7 1 7 84 7 12 462 28 17
7 8 1 8 120 8 15 792 36 22
8 9 1 9 165 9 19 1287 45 29
9 10 1 10 220 10 22 2002 55 37
10 11 1 11 286 11 26 3003 66 46
11 12 1 12 364 12 31 4368 78 56
12 13 1 13 455 13 35 6188 91 68
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where W; and Uj; also denote symplectic matrices. And further suppose that each W; has
the property that £(W,) maps the ¢ only among themselves, so that

(13.5) (pi LW;)qr) =0, i,ke{l,2,...,n}.

It then follows from this expression and (9.6) that the £(W;) also transform the g-monomials

Q of (10.8) only among themselves. In other words, the £(WW;) transform g-monomials into
g-monomials, and we therefore write

(13.6) 0 — Zd D@

Combining the expressions (13.4) and (13 6) and making use of (9.15), we obtain the result
! l ¢
(13.7) L(R)QY = LWUHLW;QY = Zd DL (U)QY.

Let us now apply the result (13.7) to the jolt decomposrtron (11.2). We find that

{1 l l
h Zaﬂzﬁ () Zd k/kajkﬁ( ) EC’)

jkk!
NM In) Z(Zd k'kajk)‘c(Uj) 0.
On defining the modified jolt strengths
(13.8) ]lk)/ _ Zd " a]k,

we may then write (11.2) in the form

1 _( !

(13.9) hy = N0 ;a;,g,wj) @

In other words, if one can obtain a jolt decomposition using the £(R;), with the R; given by
(13.4), then one can obtain a jolt decomposition using the £(U;). Furthermore the converse
also holds: As shown by Theorem E.1 in Appendix E, the elements AW;)kk form an invertible
matrix. Hence, one can invert (13.8) to determine the ayk) in terms of the d;lk),; and one may
therefore obtain a jolt decomposition in terms of the L£(R;) from a jolt decomposition in
terms of the £(U;). We leave for later the important question of how the choice of R; versus
U; affects the sizes of the jolt strengths.

13.2. A Factorization for Symplectic Matrices
Let us write the real symplectic matrix M € Sp(2n,R) in the n x n block form

(13.10) M= (él g) :

One may factor this matrix into a product of other symplectic matrices having particular
forms [30], and we shall present one such factorization that will prove especially useful to us
in our effort to determine which parts of the space Sp(2n,R) we need not explore.

Let u denote any n x n unitary matrix, and define

(13.11) M{u) = <— iﬁgg EI;EZD

Using the fact that u is unitary, one can show by direct calculation that M (u) obeys the
symplectic condition (8.3). In addition, one can verify by further straightforward calculation
that

(13.12a) M (uruz) = M (u1)M (us2),
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and
(13.12b) M(I,) = Iz,

where I,, and I5,, denote respectively the n x n and 2n x 2n identity matrices. In other words,
the matrices M (u) retain the group structure of the unitary matrices u. It follows that M (u)
is a symplectic matrix that belongs to U(n)—the largest compact subgroup of Sp(2n,R) [30].

Now consider any real symplectic matrix M of the form (13.10). It can be shown (see
Appendix F) that there exist n X n matrices F, G, and u such that F is invertible, wu is
unitary, and

G F!
Moreover, both factors in (13.13) are symplectic matrices. We shall call this factorization a
modified Iwasawa factorization.
13.3. The Relevant L,

As in §13.1 let us use L(R;) to denote L,;. Applying the modified Iwasawa factorization
to each symplectic matrix I?;, we obtain

(13.14) R; = (gjj F3—1> M (uy).

Now notice that, by our convention (9.12) for representing linear symplectic transformations
as matrices, the matrix
F; 0
W‘ - ( ; 1)
J G; F;

has the property that £(W;) maps the g, and hence also the Q,(cl), only among themselves.
(Cf., Appendix E.) It follows that with U; = M (u;) the factorization (13.14) has exactly
the form described in (13.4). Therefore, according to the argument of §13.1, given any jolt
decomposition of the form (11.2), there exists a corresponding decomposition of the form
(13.9) with the U; = M (u;) drawn from the U(n) subgroup of Sp(2n,R).

To streamline the notation, let us write £(U;) = £(M (u;)) more simply as £(u;). For
future reference we note that (9.15) and (13.12a) imply that in this notation

(13.15) L(uruz) = L(u2)L(w),

which looks precisely like (9.15). Now the jolt decomposition (13.9) becomes (here dropping
the bar from over the a)

1 l l
(13.16) hy = NM{n) Zag-k)/ﬁ(“j) l(c’)'
) k!

(13.13) M= <F 0 >M(u).

In other words, we may restrict our search for the £; to the compact subspace U (n) contained
within Sp(2n,R).

It turns out that we can, in fact, restrict our search to an even smaller subspace. To see
this, we begin by noting, as Gantmacher shows, that one may write any unitary matrix « in
the form

(13.17) u = re’,

where r and s denote respectively real orthogonal and real symmetric matrices. As the
elements r belong to the subgroup O(n), the factorization (13.17) decomposes U(n) into the
coset space U(n)/O(n). To emphasize this fact, we shall write (13.17) in the form

(13.18) u=r-c,
where the matrix
(13.19) c=¢'"
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labels elements of the (right) coset space U(n)/O(n).
Recall the Gram operator I'() introduced in §12.2. Since we shall choose our £, from the
U(n) subgroup of Sp(2n,R), we slightly modify the formulas (12.7), writing instead

(13.20a) () = %Zf(ug’al)
and
. 1
(13.20b) L) = 270 ijﬁ(uj) Q)@ £(u)!

We now prove
Theorem 13.1. The partial Gram operator f(u, 1) has the property
(13.21) L(u,l) = T(c,1),

where u has the factorization (13.18). In other words, f(u,l) is a class function: it depends
only on the U(n)/O(n) coset ¢ to which u belongs.'®

Proof. Using (13.15) and (13.18), factor the linear symplectic transformation £(u) into the
form

L(u)=L(r-c)=L(c)L(r),

and then insert this expression into (13.20b) to obtain
P 1 O\ OO £ 2 (o)
T(u,l) = W;L(C)zm Qi QY L) L(e)
Since r denotes a real orthogonal matrix, (13.11) gives

(13.22) M(r) = (6 0) .

r

As we argued earlier concerning the W, the corresponding transformation £(r) maps the
g-monomials only among themselves, and hence (¢f. (13.6))

= Z d(r) s, ’Ql(cl’)>
o

Because d(r) is a real matrix, we also have the expression

(Qx (l) Zd i € k”'

k!’

Using these last two expressions we may now write I'(u, 1) in the form

f(uvl) (ln Zd 7)) oy L(c ‘Q >< k//

kk/ k//

) £(e)f.

To simplify this expression, note that according to Theorems E.2 and E.3 in Appendix E,

Zd Jekd (1) e = Zd )i (A1) o Zd Jerd(r™ )i
= (d(r)d(ril))k,k” = (d(TT 1))k’k” = 6k/k”-

18A function f defined on a group § is a class function if f(g1) = f(g2) for any two elements g1,g2 € G
that belong to the same equivalence class. In the parlance of group theory the term “class” usually refers
to conjugacy class. Cosets, however, define another type of equivalence class and hence another equivalence
relation ~: g1 ~ g2 if g1 and g2 belong to the same coset. One may therefore use the term “class function”
as we have in Theorem 13.1.
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The expression for f(u, 1) therefore simplifies to

M& n) Z‘C(C) |Ql(ql’)><Q;(€l/)}£(C)T = f(c7 1)7
b) k/

T(u,l) =

which proves the theorem. |

From Theorem 13.1 we conclude that it suffices to limit our search for a set of N lin-
ear symplectic transformations L£(u;) to the (right) coset space U(n)/O(n) contained within
Sp(2n, R).

13.4. Other Possible Restrictions

Let us review briefly what we have learned so far: We seek a set of N linear symplectic
transformations £;. According to §11, we must choose them in such a way that the Gram
matrix T'(1) of (11.9) is invertible. Moreover, as we learned in §12, it behooves us to choose
the £, so as to make the smallest eigenvalue of I'(1) as large as possible. And now, in §13.3,
we have learned that it suffices to restrict our search for the £; to the (compact) coset space
U(n)/O(n) contained within Sp(2n,R).

Although the coset space U(n)/O(n) is dramatically smaller than Sp(2n,R), one may still
wonder whether there exist still smaller or simpler search spaces that are also worth exploring.
In other words, might some other subspaces of U(n) have topological (or other) characteristics
that make them either quicker or easier to search? Consider for a moment the U(n) subspace
[U()]" = UQl)® -+ ® U(1), an n-fold direct product of U(1)’s. This subspace has the
topological structure of an n-torus (or a Cartesian product of n circles), and we might find
our geometrical image of this subspace useful in searching it for an optimal set of £;. Of
course the set of £; found in this manner may differ from—and perform more poorly than—
an optimal set of £; chosen from U(n)/O(n); but that is another matter. We may hope in
the meantime to gain some insight by studying smaller or simpler subspaces.

Pursuing the idea in the last paragraph, we shall consider several U(n) subspaces in our
effort to gain an understanding of U(n)/O(n); and we shall study in detail the cases for
n=1,2, and 3. Of particular interest to us for n = 2 and n = 3 will be the U(n) subspaces
U(n)/SO(n) and SU(n)/SO(n). Also of interest, for n arbitrary, will be the the subspace
[U(1)]". To conclude this section, we touch briefly upon what lies ahead with regard to these
various subspaces.

When n = 1, the space U(n) = U(1) is topologically equivalent to the circle, or the one-
dimensional sphere, S'. As the treatment of the full U(1) presents no difficulty, we shall
not restrict ourselves to U(1)/O(1). Indeed, as O(1) is just the discrete group comprising
the numbers 1 and —1, the discussion surrounding equations (13.4)-(13.9) shows that such
transformations simply multiply each Q;ﬂl) by (—1)! and therefore change at most the signs
of various jolt strengths.

In the case n = 2 we first examine the smaller coset space SU(2)/SO(2) and then pro-
ceed to study the larger space U(2)/SO(2). We note that U(2)/SO(2) is covered by U(1) ®
SU(2)/50(2), and we can do these two pieces separately. The coset space SU(2)/S0(2) is
topologically equivalent to the two-dimensional surface of a sphere in three-space, S?, and
we shall be able to investigate this space without too much difficulty. In particular, we shall
see that we can indeed obtain invertible Gram matrices using a set of £; chosen only from
SU(2)/50(2). Afterwards, we shall include the effects of the U(1) piece and will see that its
inclusion can improve the minimum Gram eigenvalue by a modest amount. Again, as for
n=1, taking the elements W; of (13.4) from O(2) rather than SO(2) amounts to changing the
signs of some of the Q,(cl) and hence changing at most the signs of various jolt strengths.

Our approach for the case n = 3 will parallel that for n = 2: we shall study first the
smaller coset space SU(3)/SO(3) and then afterwards the larger space U(3)/SO(3). The
principal difference is that in this case we shall discover that the space SU(3)/SO(3) suffices.
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In other words, the U(1) part of U(3) has no effect on the Gram eigenvalues. In this case
too, as for n = 1 and 2, the choice of O(3) versus SO(3) changes only the signs of some of
the Q;ﬂl) and hence at most the signs of various jolt strengths.

As we have mentioned already, we shall also investigate the subspace [U(1)]". In this
subspace the analysis can be carried out for arbitrary n, but we shall concentrate on those
cases of special interest to us: n =2 and n = 3.



14. THE CONTINUUM LIMIT

In our attempt to maximize the smallest Gram eigenvalue, it seems natural to try to answer
the question, “How high can we aim?” In the course of answering this question, we shall find
it instructive to examine the limiting case where we allow the number IV of linear symplectic
transformations £, to approach infinity.

14.1. Transition to the Continuum Limit

Recall from §12, in particular the relation (12.4), that our motivation for maximizing Apin
sprang from our desire to minimize the size of the jolt strengths a(!). Let us take another
look at the role of the jolt strengths in (11.2):

1 W p A0
hi=———Y al),Q).
T NI 2

According to this equation, we ought to choose the L; so that the elements Eng) sample the
space of dynamical polynomials in a sufficiently democratic manner. To see this, suppose,
for example, that a particular “direction” £LQ® were not easily resolved by the given set of

EjQ,(cl). Then an h; having a significant component in that “direction” would require some

very large but somewhat self-cancelling aglk)’s in nearby directions in order to build the £Q®

component.

Although we wish to choose as few £; as possible—because that will minimize the work
of computing our resulting map (10.13)—let us briefly consider allowing the number of jolts
N to become very large. In the vector space V!, the squared length of the vector of jolt
strengths a is

1
0 40y — 3 ()’
™ a™) = St ~ (e5e)"

If the jolt strengths were roughly comparable in size, say a, this sum would be of order

1
—— NM(l,n)a® =a®
NM(Z, n) ( I’ ) Y
independent of N. This suggests that once we have enough £, chosen in a sufficiently demo-
cratic manner, the size of the jolt strengths will not vary a great deal. We reach a similar
conclusion on examining the elements of the Gram matrix, (11.9):

1

L(l),s = N Z (GO, ,chg>><ng§€l>, GO

Again, once we have enough appropriately chosen L£;, the elements EJQ,(CI) will sample the
space of dynamical polynomials in a manner sufficiently democratic as to ensure that increas-
ing N will have relatively little effect on I'(1), and hence relatively little effect on the Gram
eigenvalues )\g). This suggests that the Gram eigenvalues are bounded above by their values
in the continuum limit, where N — oo. Indeed, our numerical evidence suggests that this is,
in fact, the case. We shall therefore explore the continuum limit as a means of determining
“how high we can aim”.

14.2. The Continuum Limit

In going over to the continuum limit, we sum over the N linear symplectic transformations
L; and then allow N to approach infinity. Hence we make the correspondences

£; = L(uj) — L),

70
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and
XN
7 — [an
j=1
where U denotes the appropriate range of integration, and, as in §13.3, £(u) stands for
L(M(u)). In typical cases U will denote one of the groups U(n) or SU(n), or, sometimes, the

coset space SU(n)/SO(n). We can now revise a number of the important formulas in §§11
and 13.3. In particular, we can rewrite (11.2), or (13.16), in the form

M(1,n)
1 ) O]
14.1 h; = E /dua( w) L(u)Q,.”.
( ) l M(l,n) — Jy k () () k

This is the continuum limit version of the jolt decomposition of the homogeneous polynomial

h; of (11.1). The coefficients ch) of that polynomial are now given by the continuum limit
version of (11.3):

1

M — (q® ={a® o™ = ™ r
(14.2) D = (GO ) = {a®,07) M(l’n)zk:/uduak (u) o7 (),
where o], (u) denotes the sensitivity function defined by
(14.3) op(u) = (GO, L(w)QP).
We can now write down the Gram matrix (11.9) in the continuum limit:

r S\ * 1 l l
(14.4) L0 =107 (0"} = 37077 2= /u du (G, L(w)Q ) (Lw)Qy G
’ k

Similar expressions obtain for the Gram operator (13.20) in the continuum limit; thus

(14.5a) I(l) = /u duT (u,1),

where

(14.5b) B = 3777 2 £ Q)@ £
’ k

Two important consequences will follow from our study of the continuum limit. The first,
and most obvious, is that computations of the Gram matrix I'(l) of (14.4) or the Gram
operator T'(1) of (14.5) will teach us the best possible Gram ecigenvalues we can hope for by
any choice of £;. The second, and less obvious, consequence is that we might hope actually
to achieve the best possible eigenvalues by searching for numerical quadrature and cubature
formulas to replace the appropriate group integration, fudu. In the following sections we
shall investigate each of these two topics.



15. GRAM EIGENVALUES IN THE CONTINUUM LIMIT

We have constructed the expression (14.4) for the Gram matrix I'(l) in the continuum
limit. This matrix will not, in general, be diagonal; but, as we observed in §12.1, T'(I)
can be diagonalized by a real orthogonal transformation—and the diagonal entries will be
the eigenvalues we seek. We would therefore like to find a method for achieving such a
diagonalization.

In §12.2 we introduced the concept of a Gram operator, and in (14.5) we defined its
continuum limit version. As we observed in §12.2, the application to the Gram operator f(l)
of any orthonormal basis for the space of f;’s will yield a representation for the Gram matrix
equivalent to the T'(l) of (14.4). We then face the challenge of finding a set of orthonormal
basis functions for which f(l) is diagonal. We shall address this challenge for phase spaces of
two, four, and six dimensions, i.e., for the cases n = 1,2, and 3.

15.1. One Degree of Freedom

In the case of one degree of freedom, n = 1, we begin our study by noting that according
to (10.6)

l
M(l,n)=M(,1) = (l) =1.
Hence the sum over k in (14.5b) contains only one term, and the single g-monomial of degree
lis
(15.1) O = gV,
In addition, as we indicated in §13.4, we shall integrate over the space W = U(1), which is

more than sufficient to cover all of the relevant linear symplectic transformations. Since we
may represent any element u of U(1) in the form u = e, § € [0,27), we shall define

R(O) = L(u) = L(e?).
Thus we write the Gram operator (14.5) in the form

EN 1

27
(152 B = 3= [ @ ROQ RO

To make further progress, we must study the operator R(6).
Recall from §13.3 that we use L£(u) as an abbreviation for £(M (u)). Then from (13.11)
we find that in our present case

B N cosf sinf
(15.3) M(u) = M(e )_ (—sin9 COSQ) '

Using the results of Appendix D, we may write the operator R(6) = L(e?’), whose matrix
representation is given by (15.3), as the Lie transformation

(15.4) R(H) = exp(—g :q? +p2:).

Note that R(6) denotes a rotation operator that effects a clock-wise rotation of phase space
through an angle 6.

15.1.1. The Eigenfunctions of R(0). We shall find it very useful to determine the eigenfunc-
tions of the rotation operator, the Lie transformation R(#). To begin, let us hunt for the
eigenfunctions of its generator, the Lie operator :¢? + p?:. Consider the action of this Lie
operator on the quantity £q + np:
:q* +p*:(Eq + np) = 2nq — 2p.
Hence if £g + np denotes an eigenfunction of :¢? + p?: with eigenvalue ), it follows that
A =2n, and \n = —2€.

72
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The ratio of these two expressions implies

If, say, we choose £ = 1, then n = 44, and A = +2i. Therefore
1 1
15.5 z=—(q+1ip) and 2* = —=(q — 1
(15.5) ﬁ(q p) ﬁ(q p)

denote two eigenfunctions of :¢? + p?: which are orthonormal with respect to the inner product
(10.9) and have eigenvalues 2i and —2i, respectively. It follows immediately that z and z*
also denote eigenfunctions of the rotation operator (15.4) with eigenvalues e~* and e,
respectively:

(15.6) R(0)z = e 2, and R(0)z* = €2,

We now introduce a small trick. Consider the complex linear Lie transformation
(15.7) T = exp(% q> —p2:).

Using the results of Appendix D, we can easily determine that 7 acts on phase space according
to the rule

155) T(0) -5 (6" h) - (2):

Now note an important feature of 7. By making use of (10.12), we can evaluate the Hermitian
adjoint of 7" with respect to the inner product (10.9):
—iT i —iT
Th = exp(T:q2 - p2:T) = exp(T(— D%+ :q2:)) = exp(T g — p2:) =71
In other words, the Lie transformation 7 is unitary with respect to the inner product (10.9).
We can now complete the construction of the eigenfunctions of the rotation operator R (6).

Let us first note that in the present case, n = 1, we may write the general monomials Ggl) of
(10.7) in the form

l—r, T
(15.9) GO = ﬁ, ref{0,1,...,1}.
Then the dynamical polynomial
l—7r(; *\T
(15.10) W0 —Tow = 21"
" " (I =r)r!

represents an eigenfunction of R(6). To see this, we simply compute. Using (9.6) and (15.6),
we find . .
R(e) Zl—r(iz*)r _ (e—ZGZ)l—r(iezéz*)r _ e—i(l—27‘)9 Zl_r(iz*)T '
VI =r)r! (I —=r)r! V(=7
Hence the dynamical polynomial wﬁl) denotes an eigenfunction of the rotation operator with
eigenvalue e~ (=210

(15.11) R(O)pH = e 11=21)0y,1),

Note that because of the unitarity of 7, these eigenfunctions form an orthonormal basis:
(w®, 48 = (160, 7GYY = (GO, TITGL)Y = (GO, GY)Y = S8y,

In particular note that the eigenfunctions 1/),@ with [ fixed form an orthonormal basis for the
space of dynamical polynomials of degree [.
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15.1.2. The Gram Matriz and its Eigenvalues. Let us now evaluate the Gram operator f(l)
of (15.2) with respect to the orthonormal basis of eigenfunctions of R(6). In other words, let
us evaluate

(15.12) WORDY) = 2

2m
3 | 00 RO RO ).

Consider first the inner product <w,(«l), R(@)le)>. Because the operator R () belongs to the
U(1) subgroup of Sp(2,R), it is unitary with respect to the inner product (10.9) (¢f. §10.2).
As a consequence,

RO =R(O) " =R(-0).
Hence, according to (15.11) and (10.9),
(W, ROQY) = (R(-0", Q")
_ <ez(l72r)9w$l)7le)> _ efi(lfzr)9<¢£l)7le)>_

In a similar fashion we obtain
(ROQP, pV) = ¢it=2r10 (QO) Oy,

Using these last two results, we may write (15.12) in the form

ORI = g [ e (0, Q) (@l ).
™ Jo

Performing the integration over 6, we obtain the Kronecker delta §,.,.. Hence

(15.13) WOIEW D) = 8| (0, Q).
As these elements form a diagonal matrix, they represent the eigenvalues of the Gram matrix
(1):

(15.14) AW = | (p®, @M.

We can evaluate the Gram eigenvalues (15.14) by expanding le) in terms of the rotation
operator eigenfunctions wﬁl). Note from (15.5) that

1 1
=—(z+2"), and p=—=(2 —2%).
q \/5( ) p Z.\/5( )

It then follows from (15.15) and (15.10) that we may write the g-monomial of (15.1) in the

form
0 _ \% (%(2 . Z*))l _ \% (%)Wg (Dzz_r(z*)r
-5 ()

1\"? 1/1 (=nlrt 1\ /2 171\ Y2 "
() TROVE - () () e

Because the 1/)7@ form an orthonormal basis, we obtain

o 0 _i 1 l/2(1)1/2
<w7‘ 7Q1 >_ i (2> r ’

We therefore obtain for the Gram eigenvalues (15.14) the result

(15.16) AD = 211 <l>

(15.15)
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and the minimum Gram eigenvalue for the case n =1 is then simply

(15.17) YO

15.2. Two Degrees of Freedom

In the case of two degrees of freedom, n = 2, we begin by noting that according to (10.6)

[+1
M(,n) = M(1,2) = ( +z ) .y
Hence the sum over & in (14.5b) covers [ + 1 g-monomials, which we denote
-k _k
(15.18) OB B peon1,..1}.
(I —Fk)EK!

As indicated in §13.4, we shall begin by integrating over just the coset space SU(2)/SO(2).
Later we shall include an integral over U(1) so as to cover the whole of the space U(2)/SO(2).

15.2.1. A Representation for the Coset Space SU(2)/SO(2). Before we can find a represen-
tation for the coset space SU(2)/S0(2), we first need an appropriate representation for the
group SU(2). We have found a useful choice in a variant of the standard Euler angle param-
eterization, which writes any element u € SU(2) as [§]

(15.19) u(y, 0, ¢9) = e~ Wos/2 g=i002/2 o—ido3/2

where the o; denote the well-known Pauli spin matrices, and the Euler angles v, , and ¢
span the intervals

(15.20) Y€ [0,4m), O€[0,7), ¢€0,2m).
Recall that in general
(15.21) e o/2 — 1 cos(w/2) —i(R - o) sin(w/2),

where here 1 denotes the 2 x 2 identity matrix, . denotes a three-component unit vector,
and o denotes the three-component “vector” of Pauli matrices, (01,02, 03).

According to (13.18), we should construct the coset space SU(2)/SO(2) by extracting out
the SO(2) part to the left. Now observe that, according to (15.21),

G52 = deata2) +iswsintor2) = (GO L)

belongs to SO(2). We therefore choose to use not the standard Euler angle parameterization
(15.19) but rather a variant thereof. Let us write an arbitrary element u € SU(2) in the form

(15.23) u(y,0,0) =1 e~ Wos/2 g=i002/2 o—ido3/2 L1

where the matrix 7 denotes some particular fixed element of SU(2) which remains at our
disposal. Note that by a judicious insertion of identity matrices in the form 7—'7, we may
write the right-hand side of (15.23) as

(7_ e—iwag/Q 7_—1)(7_ e—i002/2 T_l)(T e—i¢<73/2 T_l).

We shall then select T so as to make the left-hand factor in parentheses take the form (15.22).
From a well-known result in the quantum mechanical theory of angular momentum, we
have the general formula [64]

(15.24) eB9i/2 g1 7893/ = 5, (Cosﬁ + d;1(1 — cos 5)) + %[Uj, o] sin 3,

where [0}, 0] denotes the familiar commutator of the matrices o; and oy. If we denote
(15.24) by the symbol oy (8, ), it follows from (15.24) that

(1525) eiﬁo'j/2 ei@o'k/Q e—iﬁo'j/Q — eieo'k(ﬁ,j)/2'
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This result suggests that we set 7 = ¢%91/2 with § = —7/2. Then
)
o3(—7/2,1) = —5[01,03] = —09,

and oo(—7/2,1) = —%[0’1,0’2] = o3.
Hence
re Wos/2 11 _ o2 /2

7,671002/2 7_71 _ 67190'3/27

and Te 1908/2 171 = gid02/2

Taking the product of these last three expressions, we obtain an alternate Euler angle pa-
rameterization for the general element u € SU(2):

(15.26) u(, 0, ) = eo2/2 ¢=1093/2 ido2/2

where the Euler angles v, 6, and ¢ still cover the ranges given in (15.20). We shall sometimes
refer to the three factors in (15.26) as wuy, ug, and ug, respectively.

Because u, = €"¥?2/2 belongs to SO(2) (cf. (15.22)), we have obtained in (15.26) a pa-
rameterization for SU(2) of the form (13.18). This leads directly to a parameterization for
arbitrary elements ¢ in the (right) coset space SU(2)/S0(2):

(15.27) (0, ) = ug - ug = e~ 1073/2 ¢i972/2,
where, from (15.20), the angles 6 and ¢ span the intervals [0, 7) and [0, 27), respectively.

15.2.2. Integrating Over the Coset Space SU(2)/SO(2). Before we can integrate over the coset
space SU(2)/50(2), we need to know the measure dc appropriate to the representation given in
(15.27). To this end we shall first integrate over the whole of SU(2), using the representation
given in (15.26), and then show how to eliminate the integral over ¢. From what remains,
we shall be able to determine the measure dc.

For the standard Euler angle parameterization (15.19) of SU(2) the appropriate measure
is [8]

I
(15.28) du = o sin0 df d d.

Since this measure is both left and right invariant [20], the introduction of the matrices 7 and
771 in (15.23) do not alter it. Therefore, on integrating over the group U = SU(2), we may
write the Gram operator (14.5) in the form

I(l) = 167T2/ /d9s1n9/ dy T(u, 1),

where we use (15.26) for u = u(%, 0, ). But according to Theorem 13.1, the partial Gram
operator I'(u, ) depends only on the coset ¢ to which u belongs, and hence we may perform
the v integration immediately. It contributes a simple factor of 47, and we find

2m ™
() = %/0 do ; dfsinT(c,1).

™

The two integrals, over 6 and ¢, then combine to form an integral over the spherical surface
S2. Writing d for sin 6 df d¢, cq for c¢(0, ¢), and using (14.5b), we obtain the Gram operator
in the form

- dQ - 1 [ d9
k=0

From this expression it follows that the SU(2)/SO(2) measure dc = d}/(4~).
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15.2.3. Basis Functions for Irreducible Representations of SU(2). To find a set of orthonormal
basis functions which diagonalize the Gram operator of (15.29), we have found it useful to
look for basis functions that transform according to irreducible representations of SU(2). In
this section we show how to construct such a set of functions; then, in the following section,
we show how to use them for determining the Gram eigenvalues.

Recall from our introduction to §15 that diagonalizing the Gram matrix I'(l) requires
finding an appropriate orthonormal basis for the space of dynamical polynomials of degree
I. In the present case—n = 2, U=SU(2)—it seems reasonable to suspect that such a basis
has special properties under the action of SU(2); we therefore look for an orthonormal basis
that transforms according to irreducible representations of SU(2). We begin with a small
digression to introduce the Lie algebra sp(4,R) and, in particular, its unitary subalgebra
u(2). (Here 4 = 2n.) Recall from §9.2 that Lie transformations of the form e'/2* generate
linear symplectic transformations, hence elements of Sp(2n,R). A statement resembling the
converse also holds: one may write any element of the Lie group Sp(2n,R) as a finite product
of Lie transformations of the generic form e'/?". As the objects that appear upstairs in the
exponential representation of a Lie group form the elements of the corresponding Lie algebra,
we see that the real vector space of Lie operators of the form :fs: compose the Lie algebra
sp(2n,R). In this case the Lie product is the usual “commutator” defined by [30]

(15.30) [f::g:] =:figi—giife.

At this point we remark that there exists another (isomorphic) representation for the Lie
algebra sp(2n,R). In this alternative, sp(2n,R) comprises the real vector space of quadratic
dynamical polynomials together with the Poisson bracket as the Lie product. The isomor-
phism between these two representations of sp(2n, R) is given by the correspondence f «— :f:
and is guaranteed by the relation [30]

(15.31) [:f::9:] = :[f, 9],

which follows from Jacobi’s identity for Poisson brackets. (This relation shows that the
commutator (15.30) does indeed produce another Lie operator.) On the left-hand side of
(15.31) the square brackets denote the commutator Lie product, while on the right-hand
side the square brackets denote the Poisson bracket Lie product. The notation here should
engender no confusion as the contents of the square brackets indicate which operation to
perform.

Let us now consider the Lie algebra sp(4,R) as represented by the Poisson bracket Lie
algebra of quadratic dynamical polynomials. As we know, one choice of basis for this Lie
algebra comprises the dynamical polynomials Gg) defined in (10.7) with n = 2. However, a
better choice takes into account the subgroup structure of Sp(4,R). In particular, because
the Lie group Sp(4,R) contains U(2) as a subgroup, it follows that the Lie algebra sp(4,R)
contains u(2) as a subalgebra. The following four dynamical polynomials—¥b°, ..., b>—form
a basis for this subalgebra:

1
o' = S(ai +pi+ a3 +p3),

b = qig2 + pip2,
b’ = —qip2 + q2p1,

(15.32)
1
b' = S(ai +pi -5 —p))-

We make several observations concerning these functions, (15.32) [30]:

(1) They form a linearly independent set.
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(2) They satisfy the following Poisson bracket relations:
(15.33a) v, o] = 0, j€{0,...,3}

3
(15.33b) 0] = =23 "embt,  Gke{l,...,3}.
=1

Here €,j,; denotes the completely anti-symmetric Levi-Civita tensor.

(3) The first two points confirm that the functions & do indeed form a basis for the
four-dimensional u(2) Lie algebra contained within sp(4, R).

(4) The relations (15.33) show, in addition, that the functions b!, b2, and b* form a basis
for the su(2) subalgebra, while b° forms a basis for the u(1) subalgebra.

(5) As the functions ¥’ form a basis for u(2) under the Poisson bracket Lie algebra, so the
Lie operators :b7: form a basis for u(2) under the commutator product Lie algebra.
By using (10.12), one can easily see that the Lie operators :b/: are anti-Hermitian
(i.e., 7" = —:b71); hence the associated Lie transformations exp(:bi:) are unitary
with respect to the inner product (10.9). This observation illustrates the connection
between the u(2) subalgebra of sp(4,R) and the U(2) subgroup of Sp(4,R).

Returning to our purpose, we recall our desire to find a basis for the space of dynamical
polynomials in such a way that it transforms according to irreducible representations of SU(2).
To achieve this goal, we follow a procedure familiar to any student of the theory of angular
momentum in quantum mechanics. First we create a slightly modified basis for the su(2) Lie
algebra by rearranging and rescaling our Lie operator basis {:b':,:b:, :b%:}. We define

at = —(i/2) b,
(15.34) a? = —(i/2) b,
a® = —(i/2) %

Observe that as the :b7: denote anti-Hermitian operators, so the :a’: denote Hermitian oper-
ators. From (15.31), (15.33b), and (15.34) it follows that

(15.35) [:a?:,:a®] = izfjkl als .
1

In other words, the Lie operators :a’: satisfy the same commutation relations as do the usual
angular momentum operators—J,, J,, and J,—of quantum mechanics.

The reader may recall that essentially all the characteristics of angular momentum in
quantum mechanics—the eigenvalue spectrum in particular—follow from the commutation
relations (15.35) [7, 77]. We shall take immediate advantage of this fact. For example, the
eigenstates representing a particle of spin j transform as a (2j + 1)-dimensional irreducible
representation of SU(2). Furthermore, the allowed values of spin, integral and half-integral
values of j, label all of the irreducible representations of SU(2). In looking for an appropriate
basis for the dynamical polynomials of degree I, we therefore seek linear combinations of the
G&l) that transform as spin-j eigenstates.

Continuing our angular momentum analogy, we define the Hermitian operator (not a Lie
operator)

(15.36) A2 =P e :a3:2,

which plays the role of J2. In addition, we define the so-called “ladder” operators
(15.37a) :at: =t +ia’,

(15.37b) ‘" =0t —ia% =t
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These operators—(15.36), (15.37a), and (15.37b)—behave exactly as do their quantum me-
chanical counterparts. They satisfy the important identity

(15.38) A? = _(aTiiaT e +

(15.39a) [aT::a™:] = 2:a®,
(15.39b) [a%:, 0] = £:a%:.

It follows that we can construct simultaneous eigenfunctions of the operators A% and :a3:
with an eigenvalue spectrum identical to that for spin-j particles in quantum mechanics.
Furthermore, the application of :a*: or :a~: will raise or lower the :a%: eigenvalue by 1, in
exact analogy with the usual quantum mechanical rules

gom)y=+GFm)(GEm+1)|jm=E1).

Now begins the actual construction of basis functions that transform according to irre-
ducible representations of SU(2). We examine first the dynamical polynomials of degree one.
In the present case, n = 2, there are four such functions: ¢i1, g2, p1, p2. A straightforward
computation yields the relations

(15.40) Ji

q1 ) P1 q1 ' D2 q1 ) qz
(15.41) b [ =2 TP, w2 | B =2 P, and et [ R|=2 | D
p1 21 —¢ P1 2| —¢q p1 2 P2
D2 q2 D2 —q1 D2 —P1
It then follows that
q1 q1 q1
3 1/1
15.42 AR 2|2 _Z(Z4q)|®
( ) D1 4 | p;1 2\ 2 D1
D2 D2 D2

We conclude from (15.42) and its quantum mechanical analogue,
(15.43) 2 jym) = §(G+1) [4,m),

that all four of the G&l) behave as spin—% objects. On the other hand, spin—% objects generate
two-dimensional representations of SU(2) [64, 77]. This implies, and we shall soon see, that
two copies of spin—% occur within the space of dynamical polynomials of degree one.

A close examination of the last of the relations (15.41) suggests that we build eigenfunctions
of :a: by taking appropriate linear combinations of either ¢; and ¢ or p; and ps. If £g1 +ngo
denotes an eigenfunction of :a: with eigenvalue 1/2, then

%(5(11 +1g2) = :a®:(Eq + 1g2) = _%QI + %q%

and hence n = €. It follows that the dynamical variable
1 ;
(15.44a) Y1 = E(ql +ig2)
denotes a function with eigenvalue 1/2 under both the operators A% and :a3:. The factor

of 1/+/2 normalizes this eigenfunction with respect to the inner product (10.9). Applying
the lowering operator :a™: to yi1, and using (15.41) along with the analogue of (15.40), we
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obtain®?
_ 1 .
(15.44b) Yo =:a Y1 = E(Pz +ip1).
One may easily verify that this function has eigenvalue 1/2 under A2, eigenvalue —1/2 under
3

:a”:, and unit norm. The functions y; and ys therefore compose an orthonormal basis for a
spin-1 (i.e., two-dimensional) representation of SU(2).

We now look for the other spin-% representation of SU(2). If {p1 + npe denotes another
eigenfunction of :a®: with eigenvalue 1/2, then

1 in_ i
5 (€1 +1p2) = a®:(Epr +p2) = =5 p1 + o
Again n = i, and it follows that
1
15.44c _ i) =
( ) Y3 \/5 (p1 pg) Yo

denotes another, independent, normalized function with eigenvalue 1/2 under both the oper-
ators A% and :a®:. In addition, because y3 contains only the p;, it is not only independent of,
but also orthogonal to y;. Application of the lowering operator to ys yields

(15.44d) Y4 =ca Y3 = —%(fh +iq1) = —iyy.

After verifying that y, has eigenvalues 1/2 and —1/2 under the operators A? and :a>:, respec-
tively, we see that the functions y3 and y4 compose a second orthonormal basis for a spin-%
representation of SU(2).

Let us summarize the results of the last two paragraphs. We have found a set of orthonor-
mal functions {y1,...,y4} that span the space of f1’s, the dynamical polynomials of degree
one; moreover, they transform as two identical copies of a Spin—% representation of SU(2). To
emphasize the latter point, we show the action of the :a7: on the y’s:

Y1 Y2 Y1 Y2 n Y

1 | — 1| =
(15.45)  :a': f | , a?: baf 170 , and :a®: a| 2| 72
Y3 2| Ya Y3 2| Ya Y3 21 us

Ya Y3 Y4 —Ys Ya —Y4

Observe that no mixing occurs between the (y1,y2) subspace and the (ys, y4) subspace. Fur-
thermore, the :a7: have the exact same action on each of the two subspaces. In other words,
the separate spin—% representations carried by the two subspaces are not merely equivalent,
they are identical. By this we mean that the corresponding matrices for these two represen-
tations look identical to one another.

Having constructed an f; basis that transforms according to irreducible representations of
SU(2), we would now like to do the same for f5’s, f3’s, and so on. We can build an f basis by
forming direct products of various pairs of the two Spin—% representations that compose the
f1 basis. In a similar fashion, we can build corresponding bases for the higher-order f;’s by
forming multiple direct products. In the quantum mechanical theory of angular momentum,
one finds this same program under the rubric “addition of angular momenta”. Indeed, we may
directly apply the usual Clebsch-Gordan technology [7] to the process of building higher-order
bases with the appropriate transformation properties under SU(2).

Anticipating our construction of eigenfunctions of higher degree, we introduce a useful
notation for the basis polynomials that carry irreducible representations of SU(2). We denote
them

(15.46) @3, m; ).

9For the y’s we make an exception to our customary practice of using subscripts to denote homogeneous
functions of a given degree. As the reader will soon see, we shall use the y; as we do the ¢; and p;—as a set
of codrdinate variables, or dynamical codrdinates.
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TABLE 15.1. Basis polynomials for the space of f1’s, arranged to carry irre-
ducible representations of SU(2).

@}{2 e(3, LL)=y= (q+ig)/V2
90(%7_%;171):3/2: (p2+lpl)/\/§

o2 J¥(G 3131L0)=ys= (p +1ip2)/V2
10 90(%7_%7170):y4:_(qQ+qu)/\/§

Here j and m label respectively the A% and :a®: eigenvalues. In addition, [ denotes the degree
of the polynomial-—whether written in terms of the ¢’s and p’s or in terms of the y’s. And
the last label, u, indicates the degree of ¢ in the (y1,y2) subspace. Using this notation, we
write our new basis polynomials (15.44) for the space of f1’s in the form

@(%7 %7171)_y17
(15.47a) 2 .
90(57 o 17 1) = Y2;
@(%7 %7170):%7
(15.47b) o
90(57 R 170) = Y4.

We comment that the index j of (15.46) labels the “spin” of the associated representation,
while the index m, essentially the z component of the spin, labels the basis polynomials
within the representation. Since for any (allowed) value of j we shall find an infinity of spin-j
representations, the indices [ and u serve to label the particular copy of spin-j to which the
given polynomial belongs. To denote these different representations, we shall use the symbol

(15.48) o],

By this we mean that for each u € SU(2) the linear Lie transformation £(u) acts on the basis
polynomials (15.46) according to

J

(15.49) LpGmib) = Y [,

el ).

m'=—j
Thus (15.48) stands for the spin-j representation carried by polynomials of degree | which
are of degree p in the variables y; and y2. Hence we denote the representations carried by
(15.47a) and (15.47b) as @1{2 and @162, respectively. Our choice of notations in (15.46) and
(15.48) is justified by the fact that we shall build the higher-order basis elements using various
direct products of the representations @i{Q and <I>162.

Before continuing, we make three observations concerning the higher-order basis polyno-
mials we are about to construct, the ¢(j,m;l, u) with I > 2. Our first observation concerns
the allowed values of the spin, j. Because an arbitrary f; has degree [, it follows that our I*P-
degree basis polynomials will arise from [-fold direct products of the spin—% representations,

@1{2 and (1)162' Hence each of the representations carried by the f;’s must have integer or
half-integer spin j, according as [ is even or odd, with j < %
Our second observation concerns the eigenvalues possible for the various monomials. Con-

sider an arbitrary term in one of the basis polynomials, say the monomial

(15.50) (T TSV
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of total degree | = 11 + ro + r3 + 74 and (y1,y2) degree u = r1 + ro. By using (9.5) and
(15.45), one can as follows easily evaluate its :a3: eigenvalue m:

(Y b ysiyst) = (Hy ) Z( a®iy ) [ [ o )

i#£]

;( :a’:y;) TJy] gy?)—;( :a’:y;) )Hy

1,72, T3, T4

1
= 5 = ra s =) [T = m(y i ws o).

Hence

(1551) m = %(Tl —To + 173 — ’1”4) = % - (’I”Q +T4) = (Tl +T3) — %

In other words, every y-monomial (15.50) is an eigenfunction of :a3: with eigenvalue (15.51).
It follows that the monomials within any given one of the basis elements we seek—all simul-
taneous eigenfunctions of A% and :a®:—must have the same :a®: eigenvalue m. Note that
because the r; denote integers, the result (15.51) confirms our first observation about the
allowed spin values j carried by the f;’s. Further note that any basis element of degree [
with z-component m = [/2, the highest possible m value, must have ro = r4 = 0. This fact
suggests that y]'y5® is an eigenfunction of A2, even though in general the monomials (15.50)
are not eigenfunction of A2. Indeed, a calculation similar to, but somewhat more tedious

than, that given above demonstrates that
2w, l—p Ll o l—p
(15.52) Aty " =55 Ty

Hence yf' y:l;” denotes a simultaneous eigenfunction of A% and :a3: and corresponds to an
object of spin j = /2 with z-component m = j (cf. (15.43)).

Our third observation concerns an efficient means for normalizing polynomials in the y’s
under the inner product of (10.9). Consider the complex linear Lie transformation

(15.53) T = eXP(—% ‘q1p2 + Q2p13) = eXP(—% 195)7

where g = ¢1p2 + g2p1. The transformation 7 will play a role here, in the n = 2 case, similar
to that played by the Lie transformation (15.7) of the same name in the n = 1 case. To begin,
notice from (10.12) that this 7, (15.53), like its namesake (15.7), is unitary with respect to
the inner product (10.9). Now evaluate the action of 7 on phase space by straightforwardly
applying the definition (9.3). First note that

q1 —q2 q1 q1
g0 2] _ | ¢ . and :g:2 G2 | _ | 42
P b2 Y41 P
P2 b1 b2 D2

Hence all even powers of :g: act as identity operators, and all odd powers of :g: have the same
action as :g:'. It follows that

exp(—%r :g:)z = cosh(—% :g: )z + smh(—% )z

= cos(%)z - isin(g) giz = ﬁ(z —i:g:2).
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The Lie transformation 7 therefore has the action

q q1 + g2 Y1
i q2 I | ¢a+iq —Ya

15.54 Tz=¢e (—— : :) = — . = ; ;
( ) PATL ) | py V2 | p1—ip2 —1Y2
D2 P2 — ip1 —1Yys3

and its inverse, 7~1 = 7T, has the action

' Y1 q1
) ip1

15.55 Tty = (——: :) Yaf _ | °
( ) y=exp(—ugr) | ip2
Ya —q2

We are now prepared to evaluate inner products between polynomials in the yi. Using (9.5),
(10.7), (10.9), (15.55), and the fact that 7 is unitary, we compute the inner product of two
y-monomials as follows:

T T T T ”’l 'I", ”’l 'I", s T T T ”’l 'I", ”’l 'I",
(yr ya?ys*yt, yiyetys yst ) = (U ya?ystun TT Ty vt ysyst )

_ t, 71, 2, "3, tor e Th T
—<T Y1 Y2 ygy477y1 Yo ygy4>
rl+r, orh—ro+rh—r Ty, 7o, T3 Ty 7‘/1 Té Tf% TA/L
(=)t T2 T (g Pt gyt 41 Dy’ o)
’I",Jr’l" el —p +r’77"
(—1)raTra 22T Tl ot rgt eyt 6r v Oy Ot O

Hence

(15.56) (U1 22 ys’ysts vy yst sty = rylrplrglry! Oy 11 Opyrt, Ot O -

In other words, inner products between polynomials in the y’s behave in essentially the same
way as do inner products between polynomials in the ¢’s and p’s. For example, the monomials

T1,,72,,73,,T4

Y1 Y2 Y37 Yy
7‘1!7‘2!7‘3!7‘4!

form a set of orthonormal y-monomials analogous to the general monomials we defined in
(10.7).

We have now assembled all the machinery necessary to construct higher-order basis func-
tions that transform according to irreducible representations of SU(2). To build these eigen-
functions, one may use either of two essentially equivalent methods. The first starts by taking
advantage of (15.51) and (15.52) to write down that basis element for the representation @éfﬁ
which has the highest value of m:

l_
yfys a

Vil =)

Repeated application of the the ladder operator :a™: to this eigenfunction, taking into account

(15.57) (L Ll p) =

the analogue of (15.40), yields the remaining basis elements that carry the representation @;l/f.
One can do this for each p € {0,1,...,7}. Then one builds the rest of the basis polynomials
for the space of f;’s by insisting that the basis elements be orthonormal and further applying
the operator :a™:.

The second method for constructing higher-order basis polynomials simply uses the well-
known Clebsch-Gordan technology for SU(2). Recall from the standard theory of group
representations the Clebsch-Gordan series for a direct product of two irreducible represen-
tations of SU(2). In our language, using the symbols (15.48), the Clebsch-Gordan series
is
(15.58) Pt

Jj2 o~ FJ1tiz J1+j2—1 |1 72|
11M1®(I) Nq)lu @fplu @'”@q)lu ,

lap2
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TABLE 15.2. Basis polynomials for the space of f3’s, arranged to carry irre-
ducible representations of SU(2).

o1, 152,2) =y3/V2
D3y S (1, 052,2) = y1y2
90(17 17 25 1) = Y1Yy3
D5y (1, 052,1) = (y1ya + y2ys)/V2
90(17 -1;2, 1) = Y2Y4
(I)%O 90(17 07270) = Y3y
90(17 _1;270) - yi/\/5
%, {90, 0:2,1) = (a1 — 2v5)/ V2

where | = l1 +l2, p = p1 + p2, and = denotes the equality of representations. One may then
assemble the basis polynomials (15.46) according to the rule [7, 20]

J2 . .
(15.59)  o(,milp) = Y. ( e

o\ — M2 M2
ma2=—732

J
m

) So(jlum — ma; llu Ml)w(]l?u ma; 127 /1'2)7

) denote the usual Clebsch-
Gordan coefficients connecting spin j with spins j; and j2.2° This formula, however, must be
used with some care. In particular, tabulated Clebsch-Gordan coefficients assume that the
direct product elements ¢ (j1,m1; 1, 1) ®@¢(j2, me; la, p2) form an orthonormal set. But under
our choice of norm the assumption on normalization does not always hold for the ¢’s. (For
example, w(%, %; 1,1) ®<p(%, %; 1,0) = y1ys has norm 1, while gp(%, %; 1,1)® ga(%, %; 1,1) =y
has norm 2.) To use a standard table of Clebsch-Gordan coefficients, one must first build all
the basis polynomials of interest, using (15.59), and then normalize them.

To illustrate the first method, we show explicitly how to construct the basis polynomials
for the space of f3’s by forming all possible direct products of the first-order representations,

@}{2 and <I>%2. From standard angular momentum theory we know that such direct products

J
ma m2|m

where j € {ji + ja,..., |71 — j2|}, and the symbols (7 72

produce direct sums of spin-1 and spin-0 representations (¢f. (15.58)). Consider first @1{2 ®
@}{2. According to (15.57) the normalized basis element for ®3, with the highest value of m
is

(1, 152,2) =47/V2.

After twice applying the lowering operator :a™: to this basis element, taking into account
(15.40), we obtain the remaining spin-1 basis polynomials for the representation ®3i,:

o1, 052,2) = y1y2;

p(1,-1;2,2) = y3/V2.
These three eigenfunctions are constructed from symmetric products of elements that carry
/2
1

the spin-% representation @1 . The corresponding spin-0 eigenfunction, on the other hand,

20We remark that in the present case the restriction on the Clebsch-Gordan coefficients that the m values
add algebraically, i.e., that m = m1 + ma, follows directly from (15.51).
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TABLE 15.3. Basis polynomials for the space of f3’s, arranged to carry irre-

ducible representations of SU(2).
o2, 2:3,3) =y7/V3!
Pl (3, 3:3,3) =yiy2/V2
33
o(2,-3:3,3) =y1y3/V2
0(3,-3;3,3) =y3/V3!
(p(%v %7372) = y%y?)/\/?
(I)géz 90(%7 %;3 2) = (2y1y2y3+y1y4)/\/3_
w(%,—% 3,2) = (2y1y2y4+y2y3)/\@
(p(%v % 371) = y3/\/_
g2 o2, 13, 1):(2y1y3y4+y2y3)/\/3_
o(2,-1:3,1) = (2y2ysya + y1y3)/V3!
(p(%v_% 371) Y2 y4/\/—
(2, 2:3,0) =y3/V3!
(1)3/2 (p(%v %7370) = y§y4/\/§
Y (3, -1:3,0) = ysy3/V2
o(3,-3:3,0) = y3i/V3!
o2 |23 3:3,2) = (iya — y1y2us)/ V3
32
(3, -1:3,2) = (y1y2ys — y3y3)/V3
PL/2 o(3, 3:3,1) = (y2u3 — y1ysya)/V3
31
e(3,—2:3,1) = (yaysys — 1193)/V3

is constructed from anti-symmetric combinations; it therefore vanishes. Hence we may write
1 /2 1 /2 1
117 ® P = Py

Now cons1der the direct product ®; /2 ® <I)1/2

In this case (15.57) tells us that
QO(l, 17271) = Y1Ys3.
And applying :a™: twice to this basis polynomial produces

(1, 052,1) = (y1ya + yo2y3)/V2;
(1, -1;2,1) = yoya.

These three polynomials carry the representation ®3,. Because the component representa-
tions, @1{2 and <I>10 , differ, we can also construct the corresponding anti-symmetric spin-0
basis polynomial for ®9;. Slnce its (only) basis element must be both orthogonal to ¢(1,0;2,1)
and normalized, it follows that (to within a sign)

©(0,052,1) = (y1y1 — yo2y3)/ V2.

1/2 1/2

Hence ®1,° @ ®1)° ~ &, & 09,
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TABLE 15.4.A. Basis polynomials for the space of f;’s, arranged to carry
irreducible representations of SU(2). (Continued in Table 15.4.B.)

02, 24,4) =yi/V4Al
02, 1;4,4) = ylyz/V3!

4 L p(2, 0;4,4) = yy3/2
0(2,—1;4,4) = y1y3/V3!
0(2,-2;4,4) = y3/V4!
©(2, 2;4,3) = yiys/V3!
©(2, 1;4,3) = Byiyays + yiya)/ VA

%3 < (2, 0:4,3) = (y1y3ys + yiyaua) /2
©(2,—1;4,3) = (3y1y3ys + y3ys)/ VA
©(2,-2;4,3) = y3ya/V3!

P(2, 2:4,2) =yq y3/2
(2, 154,2) = (y1y203 + Y3ysya)/2

0%, S (2, 0:4,2) = (y}yd + dyry2ysys + y3y3)/ VA
¢(2,-1;4,2) = (y1y293 + Y3Y3y4) /2
©(2,-2;4,2) = y3yi/2
(2, 2:4,1) = y1y3/V3!

02, 1;4,1) = Byrydys + y2u3)/ VA

3 (2, 0:4,1) = (y1ysyi + y2030a) /2
©(2,-1;4,1) = (3yaysy + y1y3)/ VAl
0(2,—2;4,1) = yayi/V3!

(2, 2;4,0) = yd/V4Al
P(2, 1;4,0) = y3ya/V3!

%) < (2, 0;4,0) = y3yi/2
©(2,—1;4,0) = yay}/V3!
0(2,-2;4,0) = yi/V4!

The remaining direct product, CI)I/ ’® <I>%2, produces a result entirely analogous to the
case of (I>1/2 ® <I>1/2.

(1, 132,0) = 43/v2;
QO(l, 07270) = Y3Y4;
(p(lu _1; 270) = yi/\/5

1/2 1/2

And, of course, ®;)° @ P14 ~ DI.

The sets of ba51s polynomials thus obtained using either of the methods outlined will be
the same because the first method corresponds to computing the Clebsch-Gordan coefficients
“on the fly”. Appendix H contains several Mathematica packages that allow one to do the re-
quired calculations using Mathematica. And Appendix I contains a Mathematica “notebook”
that uses some of the packages in Appendix H to determine all of the basis polynomials
through order five. Using the functions defined in that notebook, one may easily generate
basis polynomials through any order desired. Tables 15.1-15.5 contain for f; through fs
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TABLE 15.4.B. Basis polynomials for the space of f;’s, arranged to carry
irreducible representations of SU(2). (Continued from Table 15.4.A.)

(1, 1;4,3) = (yiys — yiyays)/ V38
Dy (1, 0;4,3) = (V3y2ya — n1Y3y3)/2
o(1,-1;4,3) = (y1y3ys — ¥3y3)/ V3
(1, 1;4,2) = (yiysys — y1y2y3)/2
Dy S o(1, 0;4,2) = (yiy? — y393)/ V8
(1, -1;4,2) = (y1y2y3 — y3ysya)/2
o(1, 1;4,1) = (y2y3 — v1y3y4)/V38
iy S (1, 0;4,1) = (yoydys — v1y3y3)/2
01, —1;4,1) = (y2y3y3 — v1y3)/V8
oY, {s&(O 0;4,2) = (y}y3 — 2v192y3v4 + ¥3u3)/ V12

spaces, respectively, the complete set of orthonormal basis polynomials that carry irreducible
representations of SU(2).

We conclude this section (at last!) with two final observations concerning the f; bases
just constructed. First of all, an examination of Tables 15.1-15.5 reveals a definite pattern:
The f1’s carry two two-dimensional representations of SU(2); the fo’s carry three three-
dimensional representations and one one-dimensional representation; the f3’s carry four four-
dimensional representations and two two-dimensional representations; and so on. In general,
in concert with one of our earlier observations, the space of fl’s carries representations of
SU(2) which behave as spin-j objects for each value of j € {2, 5—1,... ,jmm} where jmin
equals 0 or = for even or odd [, respectively. Furthermore, if the space of f;’s carries a spin-j
representatlon—z e,a (25 + 1) dimensional representation of SU(2)—then it carries (25 + 1)
copies of that representation. It can be shown that this fact follows as a consequence of the
Frobenius reciprocity theorem [27].

Our last observation generalizes the remarks we made in connection with the results
(15.45). Recall that the symbol @fﬂ denotes a spin-j representation carried by certain poly-
nomials of degree [; and, in particular, the index u € {% -7 % —J4+1,..., % + j} amounts
to a label for distinguishing the different copies of spin-j carried by I*'-degree polynomials.
Because @1{ and <I>1(/J denote identical spin-3 representations of SU(2), and because we
have built each higher-order representation using direct products of these two fundamental
representations, we may draw the following important conclusion: with respect to the basis
polynomials we have just constructed, the matriz representations @fﬂ for the group SU(2)
depend on j and [ but not on .

As a consequence of our last observation, we shall sometimes choose (e.g. in (15.49))
to denote the representation @{# more simply as D7, the symbol commonly used in the
representation theory of SU(2); but where we use this notation, the value of I should be clear
from the context. On the other hand, where we wish to emphasize the basis polynomials
which carry the particular representation, we shall revert to the notation @fﬂ.

15.2.4. The Gram Matriz and its Eigenvalues for the Case U = SU(2)/SO(2). Let us now
evaluate the Gram operator f(l) of (15.29) with respect to the orthonormal basis polynomials
(15.46) constructed in §15.2.3. Although it suffices in the Gram operator to integrate over
the coset space SU(2)/SO(2), as (15.29) indicates, we can determine the Gram eigenvalues
more easily by integrating over the whole of SU(2). For this section, then, we write the Gram
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TABLE 15.5.A. Basis polynomials for the space of f5’s, arranged to carry
irreducible representations of SU(2). (Continued in Table 15.5.B.)

BS

BS

jS)

5/2
@3

jS)

BS

BS

BS

= (4yfyays + yi*y4)/ V5!
(3y13/2y3 + 297 y2y4)/\/—
= (3y3y3ya + 2y193ys) / V60
= (4y193y4 + yays)/V/5!

BS

jS)

5/2
@)

jS)
|

jS)
|

BS

jS)

yiysya + 3ytyayd)/ V60
Sy + 6ytyaysys + 3y1y3y3)/ V5!
Y3y3 + 6y1y3y3ya + 3yty2y3)/ VB!
2y2y3y4 + 3y1y393)/ V60
= y3yi/V12

= y2y3/V12

= (2y 1yzy3 + 3y3y3y4) / V60

= (v3

y2y3 + 6y1yoy2ys + 3y2ysy?)/ VB!
= (y3y3 + 6y1y2y3y3 + 3y3y3ya)/ V5!

BS

BS

(1)5/2 Y1y

53

jS)
|

W W W w w w

jS)

jS)

jS)

A~ N N/~~~ A~ N N/~ A/~ N N e N A~ N N /S~ A/~ A~ N N/~~~

5/2
3

BS

SIS S I e
NN NN NN

DT N UT N[ UT N UT N Ut N Ut DU DO N[ UT N|UT N[ Ut DUt DU DU N[ UT D UT N[ Ut D[t DO NN RO UT D UT | Ut N[ Ut DU DT N[ UT N |UT N[ UT N Ut
NIUTNICD[OI)—‘[\?l)—'NlOJNIU\ N N[ NI N[ N[ Nt N N[ NJCT N[ N[ Nt l\?lUTl\?IOJlOIHNlHl\?lCAJl\?lU‘ NIUT[OICO[OIHND—'NKAJ[\?IU\
ot Ot Ot Ot Ot Ot

BS

©(3,-2:5,2) = 2u1y293 + 3y3ysy3)/V60
0(2,-2:5,2) = y3y3/ V12
e(3, 3:5,1) = yuyd/VAl
o(3, 2:5,1) = (4y1ydys + y2v3)/ V5!
@242 e(2, 1:5,1) = 3y1y3y3 + 2y2y3ya)/ V60
0(3,-3:5,1 Y2393 + 2y1y3y3) / V60
5,1
.51

=3
= (dyoysys + y1yi)/ V5!
= yoyi/VA!

jS)

operator in the form

l
(15.60) = Z /duc QINQY | £(u)f
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TABLE 15.5.B. Basis polynomials for the space of f5’s, arranged to carry
irreducible representations of SU(2). (Continued from Table 15.5.A.)

o(3, 2:5,0)=y5/VH!
©(3, 3:5,0) = yiya/VAl

232 so(? %;5,0) = yiyi/V12
0(3,—%:5,0) = y3yi/ V12
#(3,-3:5,0) = yayi/ V4l
(5, -3;5,0) = y3/V5!
w3, 2:5,4) = (ylya — yiy2ys)/V30

R w(? %;5 ,4) = (yPyaya — yiy3ys)/ V10
o(2,-2:5,4) = (V3y3ys — 11¥3ys)/V10
o(%,-2:5,4) = (y1y3ys — y3ys)/V30
o(2, 2:5,3) = (y3ysys — y3y203)/V10

212 o(3, 3:5.3)=(ySyi + y1y2y3y4 — 2y193y3)/V/30
0(3,—%:5,3) = 2uTy2y3i — v1y3ysya — y5u3)/ V30
0(3,-%:5,3) = (119393 — y3ysya)/V10
03, 5:5,2) = (y1v2y3 — y1y3y4)/\/_

23/2 w3, 3:5,2) = (Y393 + y1y2y3y4 — 2y1y3yi)/\/ﬁ
e(3,-4:5,2) = (2y3y3ya — y1y2ysy3 — y3y3)/V/30
o(2,-2:5,2) = (y3ysyi — y1y2u3)/V10
o(3, 3:5,1) = (y2ys — v1y3ya)/ V30

ok 90(%, %;5, 1) = (y2y3ys — v19393)/V10
e(3,-2:5,1) = (y293y3 — y1ysyi)/V10
e(3,-3:5,1) = (y2y393 — y1y4)/ V30

3112 {w(%, $:5,3) = (—y1393 + 2y y2ysya —y1 y3)/ VAl
o(3,—3:5,3) = (—yiv2vd + 20103ysys — y3y3) /VA!

8112 {w(%, $:5,2) = (— yfy3y4 + 2019293 Ya —yz y3)/ VAl
o(5,—2:5,2) = (—y393ys + 2y192y393 — y3yd)/VA!

According to (E.6), £(u)' = £(u!). Hence, with respect to the basis polynomials ¢, we
obtain the Gram matrix elements

F(l)jmuj/mw = (i, ms 1, p \F Isﬁ (7', m's L)) =
l - .
(15.61) > /du ey mil, ), Q§J>< VL@ el s
k su(2)
Recall here that j € {jmm, ceey %}, where jin equals 0 or % for even or odd [, respectively;

me{—j,...,j};and pu € {% —j,...,%—l—j}. Using (15.49), we may write

(L MeGmil . Q) = 3 [P )], (el n). Q1)

v
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where here, pursuant to our discussion at the end of §15.2.3, we have substituted the symbol
D7 for @] .- In a similar fashion we obtain

QP £l m'st1)) = 32 D7 (W s (QF (V1))

Inserting these last two results into (15.61), we obtain

(15.62)  T(1) jmpjrm pw = ZK /du (DI )] Dj’(ul)m,y,> X

v L \sp(2)

H%ZX (vt ), QP ) (QY el v z,u’)>],
k

By the orthogonality theorem for matrix representations of compact Lie groups, the integral
over SU(2) equals 8,/ Omms 0y /d;, where d;j = 2j + 1 denotes the dimensionality of a spin-j
representation. The Gram matrix elements (15.62) then become

855 Ommy .
(15.63) T(1) jmpjrms e = mﬂf)(—zijQp(j,y;l,u), MNQY, oG, w51, 1)) .
kv

In words the result (15.63) says that our basis polynomials, the ¢’s, reduce the Gram matrix
I'(1) to block-diagonal form.
In fact, the ¢’s completely diagonalize T'(l). To verify this, examine the ¢ content of the

Q,(f)’s. Note from Table 15.1 that
1 (y1 + iya) and L ( Ya)
= ? 5 1 = -t '
Q= FWit i @ =W T

Then using these expressions in (15.18), we obtain

(0 a1 "db Y2k -k k
==\ ———= W t+iys) "(y1 i
Qk (I—k)\K! (2) (I — k)Tl (41 Y1) (n Ya)

- (%)1/2\/%72%20( )( )y?(iy )Ry (i)
_ (%)1/2 l-z_ - Z( )( )iTZ_leII+T2yi(T1+T2).

r1ir2

This means (¢f. (15.51)) that Q,(Cl) has a decomposition of the form

(15.64) V=S 0k ol — i),
Jjn

where the 19““ denote a set of complex coefficients. Note in each term of this expansion the

1nterconnect10n between the values of the z spin component, u — 5, and the index p, which
labels the different copies of spin-j. Now look at how this connectlon affects the Gram matrix
elements (15.63). In particular, look at just the sum over v:

Sl vil ), QUNQY o, vi L))

Because of (15.64) each term in this summation contains a factor d, ,_;/20,,/—1/2. As a
consequence, 4 and p’ must equal one another, and hence the ¢’s do indeed diagonalize the
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Gram matrix:

04 Omms Oy
L Ompomnt = W;ﬂéwdfﬂ ol vilm), Q)"

055/ Omm: 0, 2
= LTS S (ot it Q)

(15.65)

We obtain directly the Gram eigenvalues we seek:

(15.66) M = Wl%ﬂ%) ST ol = £l m), QY|
k

where j € {jmm, ce %}, me{—j,...,7};and pu € {é—j, R %—I—j}. Since these eigenvalues
do not depend on m, each has an associated degeneracy of 2j + 1. Other degeneracies, of
course, may also occur; and we shall, in a moment, discuss one such degeneracy.

At this point is seems easiest to ask a computer to evaluate the Gram eigenvalues (15.66).
Before doing that, however, we shall make two observations. The first will concern an ad-
ditional degeneracy in the eigenvalue spectrum that approximately halves the number of
eigenvalues we need to compute. And the second shows that it suffices to sum over roughly
half the Q,(cl). Together these two observations lead to a substantial computational savings,
and we treat each in turn.

The Gram eigenvalues (15.66) have a degeneracy associated with the different values of p.
It turns out that

(15.67) AD = \W

Jmp jm(l—p)’
and hence eigenvalues with p # [/2 have a degeneracy of 2(2j + 1), while eigenvalues with
1 = 1/2 have a degeneracy of just (25 + 1). To verify this extra two-fold degeneracy, we
introduce another complex linear Lie transformation:

i s

(15.68) S = exp(3 :q1p2 + (J2p12) = exp(? :g:),
(cf. the operator 7 in (15.53)). Like 7, the operator S is unitary with respect to the inner
product (10.9). In addition, because 7 and S differ only in the factor multiplying :g:, a very
slight modification of our calculation for 7 yields the result

q1 —1iq2
(15.69) s|el=|""
p1 P2
D2 ip1

From this result one can show that S commutes with A2. To see this, use (9.9) and (15.36)

to obtain s

SA ST = S<Z :aj:2)81 = Z (S Iaj1571)2 = Z (:Saj:)2
Jj=1 J J
But using (9.6), (15.32), (15.34), and (15.69), one may show by straightforward computation
that
Sa' =a', Sa® = —d? and Sa® = —d’.
It follows that ST1A2S = A2, and hence S commutes with A?. The significance of this fact,
of course, is that S acting on a ¢(j, m;[, 1) cannot change the A? eigenvalue j.
In order to use the transformation S to verify (15.67), we must determine how S acts on the

g-monomials Q,(Cl) and the basis polynomials ¢. From the result (15.69) we can immediately
determine how S affects the g-monomials Q,(cl) of (15.18):

-k k Nk Nk k I—k
o ¢ g (Hige) (i)t o 4T PPN N()
U5.10) SO =S = = ) oy ) e
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And we can also determine how S affects the y’s:

Y1 q1 +1qe —ig2 +q1 Y4
1 i 1 D, —

Y3 V2 p1 + ip2 V2 | ipe—pm Y2

Ya —(q2 +iq1) i — 2 Y1

Now examine the action of S on the basis polynomials ¢(j,m;l, ) of (15.46). As noted
above, § cannot affect the value of j. In addition, because S is linear, it cannot change the
degree . To determine how S affects m and u, consider a typical term in ¢ of the form
(15.50), and use (15.71) to obtain

T2 T8y 4 — 12t T3, T T2, T3, T i, T4, T3, T2, T1

Sy Ys Y3 ys T T R T VA VS T/

According to (15.51) and our notation for the ¢’s of (15.46), the initial monomial on the
left-hand side belongs to a ¢(j,m;l, p) with m = L — (ro +r4) and g = ry + 7o, while the
monomial on the right-hand side belongs to a ¢(j, m'; 1, p') with m’ = (r4 + r9) — % =-m
and p' =1y +r3 =1 — p. In other words, the linear Lie transformation S acting on a ¢ does
the following: (i) it leaves alone the A? eigenvalue j; (ii) it negates the z spin component;
and (iii) it changes each monomial in the representation labeled by ! and u to a monomial in
the representation labeled by [ and [ — u. As a consequence, the linear Lie transformation S

must act (to within at least a sign) according to the rule

(15.72) Seym;l,p) = +i'p(j, —m; 11— p).

We can now verify our claim (15.67) about the degeneracy associated with the index wu.
Using the unitarity of S together with (15.66), (15.70), and (15.72), we find that

l
)\;Qw = m; <Sgp(j7ﬂ_ %;17/‘)78@,&[)> 27
1 l g e P2
= oD o (4 st Q)]
0
- m; <%0(J} (—p) =510 —u)),QEj’W
Hence
A=A

as claimed. We therefore need not compute (15.66) for values of p greater than [/2.

We now show that one need not sum over all the Q,(cl) in order to compute the Gram
eigenvalues (15.66). To verify this, consider the linear Lie transformation

(15.73) P = exp(g ‘q1p2 — qu1:) = eXp(—g 3b23)7

which belongs to the unitary subgroup U(2) of Sp(4,R), and evaluate its action on the g-

monomials Q,(cl) and the basis polynomials ¢. Repeating for P the steps that led to (15.70)
and (15.72) yields the results

(15.74a) PQY = (—1)kQ",,
(15.74b) Po(j,m;l, p) = £(=1)" 2 o(j,ms 1, ).

Now consider one of the terms in (15.66). Using (15.74), and the unitarity of P, we find

(ol n— 51w, Q)" = [(Polin— b:l.w). PRY)[*

= (oG = L0, ), Q).
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TABLE 15.6. The continuum limit Gram eigenvalues /\SQW for two degrees
of freedom when U = SU(2). The last column lists the degeneracy of each

eigenvalue.

L j nu Aﬁiu degen.

1 1/2 0 1/4 4

2 1 1 1/18 3

0 1/9 6

0 1 1/6 1

3 3/2 1 1/48 8

0 1/16 8

1/2 1 1/12 4

4 2 2 1/150 5

1 1/100 10

0 1/25 10

1 2 1/30 3

1 1/20 6

0 2 1/15 1

5 5/2 2 1/360 12

1 1/180 12

0 1/36 12

3/2 2 1/60 8

1 1/30 8

1/2 2 1/24 4

In other words, we can reduce the work involved in computing the Gram eigenvalues by
roughly a factor of two:
o 1 [1/2] O 2
( ) Jmu (l+1)(2j+1) ;0 ‘<S0(¢77/1‘ 29 7,“’)7Qc >| ’
where [1/2] denotes the largest integer less than or equal to [/2, and

ifc=1/2;

otherwise.

(15.76) N, = {

Appendix I includes the Mathematica notebook used to compute the Gram eigenvalues
according to (15.75) for [ € {1,...,5}, and Table 15.6 summarizes the results.

15.2.5. The Gram Matriz and its Eigenvalues for the Case U = U(2)/SO(2). In the last
section, §15.2.4, we found the Gram matrix and its eigenvalues for the restricted case in
which £(u) belongs to the coset space SU(2)/SO(2). Let us now extend our results to the
larger space U(2)/S0(2), which, according to §13.3, contains all of the relevant £(u). Because
U(1)®SU(2)/50(2) covers U(2)/SO(2), we can perform this extension by reusing most of the
work in the previous section and simply overlaying an integration over the U(1) subspace.

Although it suffices in the Gram operator to integrate over just the coset space U(2)/SO(2),
we can determine the Gram eigenvalues more easily by integrating over the whole of U(2).
Theorem 13.1 assures us that the added integration over the SO(2) subspace will not affect
our results. For this section, then, we write the Gram operator exactly as in (15.60), but
with the integral over SU(2) replaced by an integral over U(2).
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Given any unitary matrix u € U(2), one can always write it in the form
(15.77) u=uve??
where v € SU(2), 6 € [0,27], and det(u) = €. As a consequence, the integral over U(2)

factors into two pieces:
2
do
/ du = / dv / —
2w

U(2) SU@2) 0
and likewise the linear symplectic transformation £(u) factors into two pieces:
L(u) = L(e??1)L(v) = R(O)L(v),
where R(0) = L£(e"/21). We can therefore write the Gram operator as
1 o
= ! !
1578) B =Y [do [ 5 ROLE) QN L) RO
5U@2) 0
Note that this Gram operator differs from that of (15.60) only with regard to the U(1)
subspace parameterized by the variable 6.
Before we can make further progress, we need to know a great deal about the operator

R(6). Recall from §13.3 that we write £(u) for L(M(u)). Then using (13.11), we find that
R(0) = L(e"/1) acts on phase space according to the rule

a1 st 52 a1
. i 0

R(6 q2 - M 19/21 q2 - M € ) q2

( ) ) (6 ) 1 0 619/2 D1

(15.792) b2 b2 . b2
cos(0/2) 0 sin(0/2) 0 a1
0 cos(0/2) 0 sin(0/2) q2
—sin(0/2) 0 cos(0/2) 0 D1
0 —sin(6/2) 0 cos(0/2) ) \pa2

Observe that R(6) does not mix the (g1, p1) subspace with the (ga, p2) subspace. Indeed, we
may express the action of R(#) on each subspace as

q\ cos(8/2) sin(0/2)\ (q;

(15.79b) R(6) (pj) - <—sin(9/2) 005(9/2)> <pj) '
Compare this result with (15.3) and (15.4); and note that the Lie operator associated with any
function of one subspace, say :f(q1,p1):, always commutes with the Lie operator associated
with any other function of the other subspace, say :g(qa2,p2):. Therefore, using (15.32), we
may write R(6) in the form
(15.80) R(O) = exp(—g :%(q% +pi+ ¢ +p§)l) = eXp(—g :bO:).
In other words, this R (#) = L£(e??/?1) is a generalization of the operator R () defined in §15.1;
hence we shall refer to (15.80) also as a rotation operator. Now recall that the dynamical
polynomials b/ of (15.32), j € {1,2,3}, form a basis for the su(2) Lie subalgebra contained
within sp(4,R); and further recall (cf. (15.33a)) that b° commutes with &’ and generates the
corresponding u(1) subalgebra. It follows—as the alert reader has already noticed—that the
rotation operator R (#) commutes with £(v). In addition, it also follows that R () commutes
with the angular momentum-like operators :a’: of (15.34), A2 of (15.36), and :a™: of (15.37).

Let us note a few more properties of the rotation operator R(6). First, it follows from
(10.12) and (15.80) that this operator is unitary:

(15.81) RO =R(—6) =R(H) .
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Now study how the rotation operator R () acts on the y’s and how it affects the SU(2) basis
polynomials ¢ of (15.46). By straightforward computation using (15.79) and Table 15.1, one
finds that

Y1 U1 Y3

Y2 Y2 0 Y4 . (0
15.82 R(0 - (—) (—)
( ) (9) v v cos 5 + —n sin 5

Ya Ya —Y2

Now examine how R (f) affects the basis polynomial ¢(j, m; [, u). Because it commutes with
A? and :a?:, it cannot alter the values of j and m. It does, however, affect the value of p. In
general, therefore, R(#) produces a linear combination of ¢’s with the same values of j, m,
and [:

Ltj
(15.83) ROpGmilp) = Y RI™(O)wup(i,m;l,v).

v=5—j

The expansion coefficients R/ (6),,, that appear in (15.83) have several properties worth
noting. First observe that we can use the orthonormality of the ¢ with respect to the inner
product (10.9) to write the coefficients explicitly as

(15.84) RI™(0)up = (3, m; 1, v), R(O) (G, ms 1, 1)) -

Then further observe that because the ¢’s are all real linear combinations of y-monomials, and
because R(6) acting on the y’s produces only real linear combinations of y’s, the expansion
coefficients (15.84) must be real.

It also turns out that the expansion coefficients (15.84) do not depend on the index m. To
verify this claim, observe that, by relations analogous to (15.40),

+

watiaTio(gmy ) = (G +Hm)(G —m+ De(d,m; L, ),

and recall that the rotation operator commutes with :a*:. As a consequence, since atit =
:a”:, we obtain

:atia:

(j-i—m)(j'—n.”b—i-l

R (0),, = (oG, mil, v), R(O)
=G m)(jl— ) (:a”:0(j,m; L), R(0):a” :p(j,m; 1, 1))
= <<P(]am - 1ala V)vR(e)@(jvm - lala,u)>
=R H0)y,.

)sa(j,m; l,u)>

We may therefore write the expansion coefficients more simply as
(1585) Rj (9)1’# = Rjj (9)1/# = <<P(]a .]a la V)v R(Q)Qﬁ(j,], lv /L)> .

One may view the expansion coefficients R’(6),,, of (15.85) as the entries of a (2j + 1) x
(2j+1) matrix R?(#). Now note that because the coefficients R?(6),,, are real matrix elements
of a unitary operator with respect to an orthonormal basis, it follows that the matrix R7(6)
is orthogonal. Therefore, in terms of its matrix elements, we obtain the symmetry

(15.86) R(0)y, = R (—0) 0.

Let us now apply what we have learned about the rotation operator R(f) to the task
of evaluating the matrix elements of the Gram operator (15.78) with respect to the basis
polynomials ¢ of (15.46). Using (15.78), (15.81), (15.83), (15.85), and the reality of R7(6),
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we obtain
L) jimpjrmeye = (o0 mil, 1) [T (5, m/5 1,1’y
i 2
_ ! do 2 () o 1. 1 0
=7 1};} /dv/% <E(v) R(0) (g, m;l, 1), Qy >><
=Vsu2) o
(QV.c)'RO) o7 m's1. 1))
27
_ 1y d9 j ; foli m 0
=g [l [ SR 0uB () (L) olmilv). Qf) x
k:OSU(Q) 0 v’

( S%E(v)*so(j’,m’;l,v’)»

<Z+%le [av (£ ot mitv), ,§”><Q§j’,L(v)*ga(j',m';z,yf)>>

k=0 g(2)

Comparing this last expression with (15.61), we observe that the second factor in parentheses
is just one of the Gram matrix elements evaluated using the smaller space U = SU(2).
According to (15.65), these elements are diagonal, and hence we now write the Gram matrix
elements in the form

27
(15.87) (1) jmpejrm = 65§ Ommy /% K7 (0)
0
where
]
(15.88) Z Agisza W B (=0)

and the A" denote the SU (2) Gram eigenvalues given by (15.75). Recall that the eigenvalues

jmuy
)\ggw do not depend on the index m. It follows that the U(2) Gram matrix—and hence also
its eigenvalues—also does not depend on m. Each eigenvalue for the U(2) Gram matrix
therefore also has an associated degeneracy of (25 + 1).

The Gram matrix as given by the elements (15.87) is not completely diagonal—only block
diagonal. To complete the determination of the Gram eigenvalues, then, we must evaluate
the matrix elements of each block and then the corresponding eigenvalues. To reduce the
amount of computation required, we note that from the definition (15.88) it follows directly
that K7(), and hence also I'(l), is symmetric. (This should not surprise the reader.)

Appendix I includes the Mathematica notebook used to compute the Gram matrix I'(l) and
thence the corresponding eigenvalues, which we shall denote ;\g.l), according to the formula
(15.87) for I € {1,...,5}. Table 15.7 summarizes the results. On comparing the eigenvalues
listed in Tables 15.6 and 15.7, the reader will notice that restricting oneself from U(2) (or
U(2)/50(2)) to the smaller space SU(2) (or SU(2)/50(2)) causes a reduction in the minimum
Gram eigenvalues by a factor of 2 for | = 2 and 3, and by a factor of & (:%%) fori =4 and 5.

Now recall that, according to (12.4), the size of the minimum Gram eigenvalues governs one
bound on the size of the jolt strengths, which we wish to minimize. And further recall that
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TABLE 15.7. The continuum limit Gram eigenvalues S\y) for two degrees of
freedom when U = U(2). The last column lists the degeneracy of each

eigenvalue.

L g X§” degen.

1 1/2 1/4 4

2 1 1/9 3

1/12 6

0 1/6 1

3 3/2 1/32 8

5/96 8

1/2 1/12 4

4 2 19/600 5

1/80 10

1/40 10

1 1/20 3

1/24 6

0 1/15 1

5 5/2 1/192 12

7/576 12

3/160 12

3/2 1/48 8

7/240 8

1/2 1/24 4

our motivation for calculating the Gram eigenvalues in the continuum limit was to determine
upper bounds on the Gram eigenvalues for the discrete case. The results shown in Tables 15.6
and 15.7 suggest that a jolt map based on the jolt decomposition (11.2) with the linear sym-
plectic transformations £; chosen from the space SU(2)/SO(2) may perform somewhat less
well than a similar jolt map with the £; chosen from the larger space U(2)/SO(2). Determin-
ing just how serious the difference in performance is will require numerical experiments with
real maps.

15.3. Three Degrees of Freedom

The reader may very naturally approach the analysis for three degrees of freedom with
some trepidation, but this case in some ways lends itself to a more straightforward analysis
than the case of two degrees of freedom. Recall from §15.2.3 that (for n = 2) if the dynamical
polynomials of degree | carry a spin-j representation, then they carry 25+ 1 copies of spin-j.
This simple fact presented the principal complication to diagonalizing the Gram matrix I'(])
when we integrated over the space U = SU(2). Indeed, the prime motivation for our method
of constructing the SU(2) basis polynomials given in Tables 15.1-15.5 came from our desire
to ensure that the different copies of spin-j were not simply equivalent but in fact identical.
As we shall describe, this complication does not arise for the case of three degrees of freedom.

In the present case, n = 3, we note that according to (10.6)

M(l,n) = M(1,3) = <l+2) _ U+ +2)

l 2
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Hence the sum over k in (14.5b) covers (I 4+ 1)(l + 2)/2 g-monomials, which we denote as

l—ko—ks ko ks
q1 45743

VI = ky — k3) ko k3!

where ks € {0,1,...,1},and k3 € {0,1,...,l—ko}. We shall sometimes—as in (15.90) below—
abbreviate (15.89) more simply as Q,(cl), with the single index k € {1,...,3(l +1)(l +2)}
subsuming the two separate indices k2 and k3. Thus we write the Gram operator (14.5) in
the form

l
(15.89) QY. =

= 2

_ O] O] i
(15.90) () = mzkj/uduc(u)\cgk QW] £(u)'.

As indicated in §13.4, we shall integrate first over U = SU(3)—which, by Theorem 13.1, we
know gives the same results as integrating over U = SU(3)/SO(3). Afterwards we shall extend
our results to include all of U(3) in our integration.

15.3.1. Basis Functions for Irreducible Representations of SU(3). We want a basis set of
orthonormal dynamical polynomials that diagonalizes the Gram matrix I'({). To this end, in
parallel with the case n = 2, we look for basis functions that transform according to irreducible
representations of the group SU(3). Since the basis we shall use has been constructed by
others, we restrict ourselves to introducing and describing that basis.

In the parlance of group theory, SU(3) has a “rank two Lie algebra”, su(3). This means,
among other things, that two indices, say j; and jo, suffice to label all the irreducible rep-
resentations of SU(3), or su(3). We shall therefore use the pair “(j1,72)” to denote these
different representations. The indices j; and ja take all non-negative integer values, and the
corresponding representation has dimension [20, 30]

(15.91) d(j1,j2) = (j1 + 1) (G2 + 1) (3 (41 + j2) + 1)

Another common notation for the irreducible representations of SU(3) uses simply the di-
mension as a label. To distinguish the representations (j1,72) and (j2,71), which obviously
have the same dimension, one uses a diacritical mark of some sort (along with a convention
as to which one is which). Thus we may call the (2, 0) representation simply 6, and the (0, 2)
representation 6. This notation, however, does not distinguish all the irreducible represen-
tations. The (2,1) and (4,0) representations, for example, both have dimension fifteen. For
these cases, then, one must give j; and jo explicitly.
Bég and Ruegg in [9] constructed a basis set of angular functions,

130,861, b2, b3),

on the five-sphere and showed that they transform according to irreducible representa-
tions of SU(3).2? These functions are given by

21 S5

(15.92) ofls = —— azOrtoety (26) d*
6

G a8V +61+8),3 (1 — 28 —61-8) 20 A1 (G o)+ 3,1, (26)
% ei%(jl —Jj2)(¢1 +¢2+¢3)ei13(¢2—¢3)eiéy(—2¢1 +¢2+¢3) ,

1
sin 6

2lThe five-sphere S° is the five-dimensional surface of a sphere in six-dimensional space.

22B¢g and Ruegg call the functions 7,[)[]}3332, harmonic, by which they mean that the 1/113113]}2, are eigenfunctions
of the Laplace operator on the manifold S°. In the usual parlance, however, a harmonic function on a given
differentiable manifold is one that satisfies Laplace’s equation V21 = 0, where V2 denotes the Laplacian on
the manifold of interest. In other words, harmonic functions vanish under the action of the Laplace operator
and thus correspond to eigenvalue zero. We shall therefore refer to the i 13}3132, merely as angular functions.



§15.3 CREMONA APPROXIMATION OF TRANSFER MAPS 99

where the angles 6, £, and ¢; in S° span the intervals
6 € [0,7/2);
(15.93) &€ 0,7/2);
¢; €10,2m), je€{1,2,3}.

The functions d’,, (3) are the well-known matrix elements of the quantum mechanical rota-
tion operator®® exp(—i3.J,):

() = (G| e
They are given by Wigner’s formula®? [75],
(15.94) () = /G + 0N G — 70N G+ ) G = m)ix

bt/ (cOS B/2)%—2h—m"4m (giy g/ 9)2ktm'—m

jm>.

k

or by the equivalent, but useful, alternative formula

(15.94b) d?,,,.(8) = /(G +m) (G —m)! (G +m) (G —m)!x

J—k—m (cos B/2)2k+m'+m (sin B/2)2i—2k=—m'—m

k

In either of formulas (15.94) the summation spans all integer values of k for which none of
the factorials has a negative argument. N

As their notation suggests, the functions ¢7;’3 in (15.92) carry the irreducible represen-
tation (j1,72) of SU(3), or su(3). The additional indices—I, I3, and Y—label the individual
basis functions carrying that representation. In Bég and Ruegg’s language (which was moti-
vated by the theory of strongly interacting particles) these indices denote respectively eigen-
values of the operators for total isotopic spin, z-component of isotopic spin, and hypercharge.
The isotopic spin I and its z-component I3 take the following values:

(15.95a) 1€{0,3,1,.... 501 +j2) },

(15.95b) Ise{l,I-1,...,—1I}.

One cannot so simply state the possible values of Y, but one can say that
1. .

(1596) Yh = 5(]1 —jg)

is one of the Y values, and all other values of Y differ from Y} by an integer.

In a given representation, say (j1,7jz2), for a fixed value of Y only certain values of I3, or
I, can occur: the allowed values of the pair (I3,Y) define the so-called weight vectors of the
representation (1, j2) of su(3).2° Not all of these weight vectors are necessarily unique in
a given representation, but the value of total isotopic spin I distinguishes the basis func-
tions corresponding to such degenerate weight vectors. There exists a beautiful and elegant
theory—developed by Cartan—which describes not only the relations amongst the weight
vectors but also how to find them using generalizations of the raising and lowering operators
of su(2) [10]. We shall not discuss that theory but only hint at it from time to time.

By now the reader has begun to wonder how the functions Ij}ff, on S° relate to our stated
needs: a basis set of dynamical polynomials in six-dimensional phase space. To make the

23Note that we use Rose’s convention [75] of a —i in the exponential rather than a +i, as in Edmonds [35].

240ne can also write these matrix elements more succinctly in terms of Jacobi polynomials. For technical
reasons, however, that form proves less useful for our purposes.

25The weight vectors are given by a simple rescaling: (I3/v/3,Y/2) [10].



100 D. T. ABELL

connection, we shall as in §15.2 use a set of complex dynamical variables. Let us define

(cf. (15.5))

1 .
(15.97a) zj = 75((1;' +ip;)
and its complex conjugate
. 1 :
(15.97h) zj = —=(q; — ipj)

TV2
for each j € {1,2,3}. Inverting these formulas, we obtain the relations

1 *
(1598&) q; = E(Z] + Zj),
—i .
In a moment we shall describe the relationship between the z’s and the five-sphere. First,
however, note that the complex linear Lie transformation

i
8
converts the ¢’s and p’s into z’s. In fact, since the different degrees of freedom—labeled 1,

2, and 3—commute with each other, the operator (15.99) is a simple generalization of the
operator (15.7) of the same name in §15.1.1. Hence (¢f. (15.8))

(15.100) T <]‘§j) = <12) .

It follows also that the operator 7 of (15.99) is unitary with respect to the inner product
(10.9). This means that inner products between polynomials in the z’s behave in essentially
the same way as do inner products between polynomials in the ¢’s and p’s (¢f. (15.56)). In
particular, the monomials

(1598b) p; =

(15.99) T =exp(5iaf 03 +a3 — 03+ d - p}:)

erl 227"2 237“32;‘7“42;7“5 Z;:TG

\/7‘1! 7‘2! 7‘3! T4! 7‘5! ’f‘ﬁ!
form a set of orthonormal z-monomials analogous to the general monomials we defined in
(10.7).
We can now fill in the connection between the dynamical polynomials we need and the
angular functions on the five-sphere S°. To do this, we begin by making the definitions

* * * 1
(15.101) r? =22 + 202 + 2325 = (a1 + 63 + @3 + 01+ P3 +p3)

(the second equality follows from (15.97)) and

21 = re'® cosb,
(15.102) 29 = re'®? sin 6 cos &,

23 = re'®? sin 0 sin &,
which determine a one-to-one relationship between the complex codrdinates z; and the “polar”
codrdinates given by a radius r (scaled by a factor of %) and five angles on S°. (Here we
have tacitly assumed that the radius r and the angles on S°, as well as the ¢’s and p’s, are
real.) The 27, of course, are determined by complex conjugation. Though it is not obvious,
it turns out that each angular function ¥ Ij}g, defined in (15.92) can be written entirely as a
polynomial in terms of the variables (; = z;/r and ¢ = 27 /r. (We must divide out the radius

r because the 1 IJ}E‘J; are functions of the angles alone.) Furthermore, each term in a given

}}3])2, is of degree j; in the variables (; and of degree j» in the complex conjugate variables
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73 hence with respect to the (’s the 1/113}33)2, are polynomials of total degree j; + jo. Said
another way, each function ¢ f};f, is a quotient which contains in the numerator a polynomial
in the 2’s of degree j; + j» and in the denominator the quantity r7:172. These polynomials,
however, are not yet the dynamical polynomials we seek. To complete the connection between
the dynamical basis polynomials and the angular functions, we must add a bit more detail.

The most important piece of additional information we need is the following [26]
Theorem 15.1. The space of fi’s, i.e., the space of homogeneous polynomials of degree [ in
siz-dimensional phase space, carries the following irreducible representations of su(3):

0,0), (1,1 —1),(2,1-2),...,(1—2,2),(1-1,1),(1,0),
(0,1-2),(1,1—3),...,(1-3,1),(1—2,0),

(15.103a)

(0,1),(1,0) for!l odd,
(0,0) for 1 even.

One may express this list of representations more concisely (though less symmetrically) as
the irreducible representations (j1,j2) where

Jj1€40,1,...,1},
J2 E{(l—jl) mod2,((l—j1) mod2)+2,...,l—j1}.

The (j1,j2) given by (15.103) compose the complete list of irreducible representations carried
by the space of fi’s. Furthermore, each representation (j1,j2) given by (15.103) occurs once—
and only once—in the space of fi’s.

Ezample. The fo’s carry the representations (0,0), (0,2), (1,1), and (2,0). The f3’s, on the
other hand, carry the representations (0, 1), (0, 3), (1,0), (1,2), (2,1), and (3,0).

At this point we note that the angular functions ;};}2, cannot without modification serve as
the dynamical basis polynomials we seek. One objection, of course, is that the i Ij}ff, depend
on the (’s rather than the z’s. For this reason we define the modified angular functions

(15.104) Dz = pitig iz

(15.103b)

which are strictly polynomials in the z’s. Indeed, a given % f};f, is of degree j; in the vari-
ables z; and of degree jo in the complex conjugate variables z7. Although (15.104) defines
polynomials in the z’s—and hence polynomials in the ¢’s and p’s—we must still modify the
0 Ij}ﬁ, in order to obtain the desired basis polynomials. Consider, for example, the f3’s: as
just noted in the above example, they carry the (0,1) representation, but the 1510113), have
degree one. To overcome this discrepancy, however, it suffices to multiply the given 1/1‘17};')2,
by the appropriate power of r. Thus an f; basis that transforms according to irreducible

representations of SU(3) is given by the dynamical polynomials

(15.105) V(1 do, I 05, Vi1) = N vl fils = N - (12)2 07000 e
where we have used the definition (15.104) to obtain the second equality. Here j; and jo label
the irreducible representations of SU(3) listed in Theorem 15.1, and the indices I, I3, and Y
label the individual basis elements within the representation (ji,j2). Of course r? is given
by (15.101), and the wf};f/, originally given by (15.92), must be written in terms of the z’s
using (15.102). The factor N denotes a normalization constant which we shall determine by
normalizing the dynamical polynomials with respect to the inner product (10.9). It depends
on the labels I, j1, jo, I, and Y.

The trick we have just used—obtaining the dynamical basis polynomials we seek by mul-

tiplying the IJ }jf, by an integer power of r—works because of the following two facts:
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(1) Theorem 15.1 shows that for each representation carried by the f;’s the sum j; + jo
differs from [ always by an even integer (possibly zero). Hence, making up the

J1J2

difference in degree between a modified angular function 9775, and the f;’s requires
a polynomial of even degree. As a consequence, the ¥(j1,j2,1,I5,Y;1) of (15.105)

are indeed polynomials in z

(2) Multiplying 1/)13}3312/ by 7! does not alter the eigenvalues I, I3, or Y.

To demonstrate the second point, we shall use the Lie algebra of su(3).
One choice of basis for the eight-dimensional su(3) Lie algebra comprises the generators

[9, 10]
—i * *
Hy = —= 2025 — 2323:,
(15.106a) 2v3
—i
Hy = 3 —2212] + 2225 + 23231,
E1 = 76 1Z2%31, E_l = % ‘29 R3%,
—1 —1
(15.106Db) Ey = 76 2227, E_, = % 252,
—1 . -,
E3 = 12321, E_3= 23211,

V6 V6
Using the relations (15.97) or (15.102), one may rewrite these generators in terms of either
the ¢’s and p’s or the angles in S?>. When written in terms of ¢’s and p’s, the basis elements
(15.106) represent a Lie subalgebra of the full Lie algebra of sp(6,R).

To simplify computations in the su(3) Lie algebra, we rewrite the action of a Lie operator
(¢f. (9.1)) in terms of the z’s. First note, using (9.8) and (15.100), that

[Zju Zk] = [Tq_]aqu] = T[qju Qk] = 07
(25> 2] = [T 45, —iT pi] = —iT [q;, pr] = —idj-

It follows then [73, p. 167] that

(15.107) fig=1[fg]=—i)

J

of 99 Of 99
0z; 0zF 025 0z '

Hence the z; and z7 behave essentially the same as the ¢; and p;; we need only insert an

extra factor of —i.

In a similar fashion one may convert the formulas (10.12) for the Hermitian adjoints of
quadratic monomials into analogous formulas in terms of the z’s. To do this, we first prove
the following simple

Theorem 15.2. IfU denotes any unitary Lie transformation, then
U:fu=t =uft

Proof. Since U is unitary, U T = 1~1. Then because U is a Lie transformation, we can use
(9.9) to obtain

<1/J,L{:f:TZ/{Tg0> = <Z/{:f:Z/{T1/),g0> = <:L{f:1/),<p> = <1/),:Z/{f:T<p>.

As this result holds for arbitrary functions ¢ and ¢, the theorem follows. |
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Now apply (9.9) and Theorem 15.2 to the adjoint relations (10.12) using the unitary Lie
transformation 7 of (15.99). We obtain

zizpt = zf 2p,
(15.108) 2zt =,
:zjzk:T = — iz 2.

(One may also prove these relations by using (10.12) and (15.97) and doing a somewhat
tedious calculation.)

From the adjoint relations (15.108) one may see that the su(3) basis elements H; and Ha
of (15.106a) are Hermitian with respect to the inner product (10.9). In addition, the basis
elements F,, of (15.106b) satisfy the relation

(15.109) E, =E_,.

The eigenvalues I, I3, and Y of the SU(3) basis functions must correspond to a set of
mutually commuting operators. The fact that the su(3) basis elements H; and Ha commute,
as one can verify using (15.31) and (15.107), suggests a connection. Indeed, the operators for
z-component of isotopic spin and hypercharge have the representations [9]

=V3H, = 2222 2373,
(15.110)

Y = 2Hy = ?Z —2212] + 2225 + 23231 .

Before discussing the operator for total isotopic spin, which we shall denote I 2, we pause to
observe that every z- monomlal is an eigenfunction of the operators Ig and Y. On denoting
the general z-monomial by?®

. T, T
37‘ — 217‘1227‘2237‘32T 425 'SZ;: 67

one can, by straightforward computation using (15.107), demonstrate that

(15.111) 225 g = (T — Tj13) 3
From this result and (15.110) follow the relations
~ 1
I35, = 5(7"2 =713 =75+ 76) 3r,
(15.112) .
Y3, = g(—2r1 +ro41r3+2ry — 15 —16) 3

Together with our earlier claim that the modified angular functions z/;}},ff, are of degrees j;
and j in terms of the z; and 27 respectively, the relations (15.112) place stringent constraints
on the possible forms of the dynamical basis polynomials that transform as irreducible rep-
resentations of SU(3).

There exist amongst the basis elements (15.106) of su(3) important commutation relations
that determine the properties of the basis functions®” (41, j2, I, I3,Y;1). These relations
include three that give the embedding of su(2) within su(3) as represented by isotopic spin.

If we use fg, instead of H; and define

(15.113) It = V6E4y,

26Note that in 3r we use the subscript r to stand for the set of exponents {r1,...,rs}. The reader should
not confuse this r with the radius r defined in (15.101).

2THere the reader might recall how the su(2) commutation relations determine essentially all important
properties in the quantum theory of angular momentum [7, 77].
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then these relations may be written
(15.114a) (I, 4] = + I,
(15.114b) (I, 1] =215.

(One can prove these relations using (15.31), (15.107), (15.106b), and (15.110).) It follows
that the operators fi play the roles of raising and lowering operators for the eigenvalue I5.
And indeed a restriction to the su(2) part of su(3) will appear very familiar to anyone who
has studied angular momentum in quantum mechanics. The operator for total isotopic Spln
I2 turns out to be a Casimir operator [20, p. 592] constructed from the basis elements I+,
I_, and Ig.

P P
(15.115a) P=f 4 (LT +1- 1),

Though not a Lie operator, this operator is Hermitian. Using the commutation relation
(15.114b), we may also write I? in the alternative forms

~ ~2 ~ ~ o~

2=I3 —I+1,1
(15.115Db) e
:I3 +I3+I_I+.
Then the raising and lowering operators act on the basis polynomials ¥ of (15.105) according
to the rules

f‘i‘ w(j17j27]713ay;l) = _\/(I - 13)(1 + I3 + 1) w(j17j27[7 I3 + 17Y7l)7
j\* 1/}(.].15.]'25[5[37}/;[) = _\/(I+ 13)(1 - I3 + 1) w(jla.]évjv I3 - 17le)
Except for the choice of phase, these rules follow from (15.115b) using the well-known argu-
ments borrowed from the theory of angular momentum in quantum mechanics. The remain-
ing basis elements of (15.106b), Eyo and Eig, behave like generalized raising and lowering
operators that affect the eigenvalues of both Ig and Y simultaneously. -

Let us return now to the question of why multiplying the angular functions ¥ ;};12/ by 7t
delivers us the dynamical basis polynomials we want. Using (15.101), (15.106b), (15.107),
(15.112), and (15.113), we find that

(15.116)

T 2 . * * * * * *
Iy 7% = —i 2023, 2127 + 2025 + 2323 = — (2320 — 2223) = 0,
I_r? = —i[2323, 212} + 2025 + 2323 = —(—2325 + 25 23) = 0,

1
=-(0+0+0)r* =0,

T .2 T * * *
Isr® = Is(z12] + 2225 + 2323) 5

and
Y2 =Y(z2t + 202 + z3723) = %(O +0+0)r* =0.

In other words, 72 denotes a dxnamical polynomial of isotopic spin zero and hypercharge
zero. Because any Lie operator L acts as a derivation (cf. (9.5)), we have the general relation
Lok = frh? (ZT)

Then from the above relations it follows that
f+rl =1 :fg’f'l =Y = 0;
hence, using the first form in (15.115b),
Prt= (L~ T+6 T, T )r' = 0.
We now conclude that
(o) = (o) o iy + v (i) = I (rvil}).
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In a similar fashion we conclude that

Y(r'ofiy) =Y (roi).
and

P(r'yily) = 1+ 1) (r'oiy ).

These last three relations prove that multiplying the angular functions 1 IJ}SJ; by 7! has no
effect on the eigenvalues I, Is, and Y. It then follows that the polynomials ¥ (j1, j2, I, I, Y1)
defined by (15.105) do indeed compose an f; basis that transforms according to irreducible
representations of SU(3).

An alternative to the proof just given relies on the (straightforward to prove) fact that
all of the generators (15.106) of the su(3) Lie algebra return zero when acting on the r? of
(15.101). It follows that any element of SU(3) acting on rlzbf}gf, returns r! times the result of

that same SU(3) element acting on 1/’;};732/7 hence the polynomials 1 (j1, a2, I, I3,Y;1) inherit

the same transformation properties as wlj}sjf/ under irreducible representations of SU(3).
The alert reader will recall (¢f. §12.2) that we want an orthogonal basis of dynamical
polynomials. The orthogonality of the ¥(j1,jo, I, I3,Y;1) follows automatically from the
fact that they have distinct eigenvalues with respect to the mutually commuting Hermitian
operators ﬁ, fg, and Y [41, p. 163]. B
The angular functions ¢ 13}3312, —and likewise the modified angular functions Ij}gf/fpossess
certain symmetries that arise from well-known symmetries of the matrix elements dfn,m(ﬁ).

In particular, the symmetries

(15.117a) & (B) = d (=B) = (=)™ ™dl () = (=)™ ™ d . _,.(8)
and
(15.117b) &, (B+7)=(=17""d, _(8) = (=), (B)

follow directly from the formulas (15.94). (We might also add that the first equality of
(15.117a) expresses the unitarity of the matrices d’ , .) From the symmetries (15.117) one
may obtain the following important symmetry for the modified angular functions written in
terms of the z’s:

(15'118) 1/7]]].,2]{;,7}/(217 ZT? 22, 257 235 Z;) = (—1)1_I3¢f}§§(zfa 215 Z?tv 235 257 22)'

In words, performing the exchange j; < j2 and reversing the sign of Y gives the same result
as performing the exchange z; < z3, complex conjugating all of the z’s, and multiplying
by the phase factor®® (—1)/=13. This symmetry applies equally well to the dynamical basis
polynomials ¥ (j1, j2, I, Is, Y1) of (15.105).

The reader will find in Appendix H the Mathematica package sp6tools.m which de-
fines the operators and functions necessary to perform all of the calculations in this sec-
tion. In particular, the function psi[] returns the orthonormal dynamical basis polynomials
¥(j1, 42,1, I3, Y;1) of (15.105). Table 15.8 lists those basis elements with [ € {0,...,5} which
carry the representations (j1, j2) having j1 > jo. The symmetry relation (15.118) determines
all of the other basis polynomials which have | < 5.

281 one uses Edmond’s convention for the dfn,m, then the phase factor is (—1)7*13. The statement of the

symmetry relation (15.118) as given in [73] omits this factor.
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Table 15.8: Orthonormal basis polynomials 1 (j1, ja2, I, I3, Y;1) for
the space of fi’s (I € {1,...,5}) arranged to carry irreducible repre-
sentations of SU(3). This table includes only those basis functions
which carry representations (j1,j2) having j; > jo. Use the sym-
metry relation (15.118) to obtain the remaining basis elements.

I I3 Y (0

(J1,42) = (0,0)

0 0 0 -1

(J1,42) = (1,0)
1/2  1/2 1/3 22
1/2 -1/2  1/3 —2z3

0 0 —2/3 -1

(J1,42) = (2,0)

1 1 2/3 —22 /2

1 0 2/3 Z223

1 -1 2/3 —z3%/V2
1/2 1/2 <—1/3 Z122
1/2 -1/2 -1/3 —2123

0 0 —4/3 —212/\/2
(J1,42) = (1,1)
/2 1/2 1 2927
1/2 -1/2 1 —z32F

1 1 0 —2925

1 0 0 —(2225 — 2323)/V/2

1 -1 0 2325

0 0 0 —(2212F — 2025 — 2323) /6
/2 1/2 -1 2125
1/2 -1/2 -1 2123
(J1,42) = (0,0)

0 0 0 —r2/\/3
(J1,42) = (3,0)
3/2  3)2 1 223 /6
3/2  1/2 1 —2%23/V2
3/2 —1/2 1 29232 /2
3/2 —3/2 1 —233/\/6

1 1 0 —21222/\/§

1 O O Z129%3

1 -1 0 —21232//2

/2 172 -1 21220/V/2
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1 I3 Y
12 —1/2 -1
0 0 -2
(J1,42) = (2,1)
1 1 4/3
1 0 4/3
1 -1 4/3
3/2 3/2  1/3
3/2 1/2  1/3
3/2 —1/2 1/3
3/2 —3/2 1/3
/2 1/2  1/3
1/2 —1/2  1/3
11 —2/3
10 —2/3
1 -1 -2/3
0 0 —-2/3
12 1/2  -5/3
1/2 —1/2 —5/3
(J1,42) = (1,0)
172 12 1/3
1/2 -1/2 1/3
0o 0 -2/3
(J1,J2) = (4,0)
2 2 4/3
2 1 4/3
2 0 4/3
2 1 4/3
2 —2  4/3
3/2 3/2 1/3
3/2 12 1/3
3/2 —1/2  1/3
3/2 —3/2 1/3
11 —2/3
1 0 —2/3
1 -1 —2/3
12 1/2  -5/3
1/2 —1/2 —5/3
0 0 -83
(J1,J2) = (3,1)
3/2 3/2  5/3
3/2 1/2  5/3

CREMONA APPROXIMATION OF TRANSFER MAPS

SU(3) basis polynomials for the space of f;’s (ctd.)

(4
—2’1223/\/5
—2’13/\/6

—22%27 /2
22232

—23%21 V2
29%23/V2

29(2023 — 2232%) V6
—23(22025 — 2323)/V/6
2

23°23/V2

20(3z12F — 2025 — 2323)/V12
—23(3212F — 2225 — 232%)/V/12

—2122%5

—z1(2225 — 2323) V2

212325

—z1(2127 — 2225 — 23,2%‘)/\/1

21223/V?2
21225 V2

r229/2
—r223/2
—r221/2

—24/V24
22323/\/6
—222232/2
2223% /6
— 25t /V/2d
21223/\/6
—2’122223/\/5
2122232 /V/2
—2’1233/\/6
—2122’22/2
2122223/\/5
—2122’32/2
21322/\/6
—21323/V6
—n/V24

22325 /6
—z2223zf/\/§

107
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SU(3) basis polynomials for the space of f;’s (ctd.)

I I Y
3/2 —1/2  5/3
3/2 —3/2 5/3
2 2 2/3

2 1 2/3
2 0 2/3
2 -1  2/3
2 -2 2/3
11 2/3
10 2/3
1 -1 2/3

3/2 3/2 -1/3
3/2 1/2  -1/3
3/2 —1/2 -1/3
3/2 —3/2 -1/3
/2 1/2  -1/3
1/2 -1/2 -1/3

11 —4/3
1 0 —4/3
1 -1 —4/3
0 0 —4/3

/2 1/2  —17/3
1/2 -1/2 —17/3

(1, J2) = (2,2)

11 2
10 2
| 2
3/2  3/2 1
3/2 1/2 1
3/2 —-1/2 1
3/2 —3/2 1
/2 1/2 1
12 -1/2 1
2 2 0
2 1 0
2 0 0
2 -1 0
2 -2 0
11 0
10 0
| 0
0 0 0
3/2 3/2 -1

(0
2023227 /V/2
—233Zf/\/6
—223Z§/\/6
_222(2225 — 32325)/\/ 24
zoz3(2225 — 232%) / V4
—23% (32925 — 2323)/ V24
23325/\/6
—29% (4212 — 2225 — 2323)/ VA0
,2’223(42121F - 2225 - Z3Z§)/ V20
—z32 (4212} — 2225 — 2323) /V/40
2’12’22Z§/\/5
2122(2225F — 2232?)/\/6
—,?:123(22225k — 2325:)/\/6
2123225/\/5
z122(32127 — 2(2225 + 2323)) /V/30
—2123(321 27 — 22075 + 2325))/V/30
—2122025 /2
—21% (2025 — 2323) / V4
2’122’323/\/5
—212(2z12f — 3(2225 + z323%)) /60
213Z§/\/6
21325/\/6

—29227%/2
2023252 /\/2
—2322%/2
2022525 V2
2027 (2025 — 22323) /6
— 2325 (22025 — 2323)/V/6
2322525 V2
2925 (32125 — 2(2225 + 2323))//30
— 2325 (32127 — 2(2225 + 2323))/V/30
—29225%/2
— 2025 (2025 — 2323)/V4
—(20223% — dzozzzhzl 4 232257 /V/24
2323 (2025 — 2323) /V/4
—23223%/2
— 2025 (42127 — 223 — 2325) /V/20
—(2025 — 2323)(4212f — 2225 — 2323)//40
2325 (42127 — 2025 — 2325) /20
—(3212212 — 62125 (2225 + 2325)+
(2223 + 2325)%)/V120
21222§2/\/§
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SU(3) basis polynomials for the space of f;’s (ctd.)

I I Y P
3/2  1/2 -1 2125 (22025 — 2323)/V/6
3/2 -1/2 -1 2125 (2025 — 22323)/V/6
3/2 -3/2 -1 —2123252 /2
12 12 -1 7125 (3212] — 2(2225 + 2375))/V/30
1/2 -1/2 -1 712532127 — 2(2225 + 2323))/V/30
1 1 —2 —21%257/2
10 -2 —212Z§§§/\/§
1 -1 -2 —21225%/2
(jlaj?) = (270)
1 1 2/3 —1r2252/y/10
1 0 2/3 r22923/\/5
1 -1 2/3 —1r2232/y/10
/2 1/2  -1/3 22122 /5
1/2 -1/2 -1/3 —r?2123/V/5
0 0 —4/3 —122,2/4/10
(J1,92) = (1, 1)
/2 1/2 1 r2292% N5
/2 —-1/2 1 —r22325 /5
1 1 0 —T2z2z§/\/5
1 0 0 —1r2 (2025 — 232%)/V/10
1 -1 0 122325 /5
0 0 0 —1%(2212] — 2225 — 2323)/V/30
/2 172 -1 2225 /V5
/2 -1/2 -1 r22125 V5
(jlaj?) = (070)
0 0 0 —r4/y/24
(J1,J2) = (5,0)
5/2 5/2  5/3 25° /V/120
5/2 3/2 5/3 —z%23/v/24
5/2 1/2  5/3 293232/ V12
5/2 —1/2  5/3 —29%23% /V/12
5/2 —3/2 5/3 2p23% /24
5/2 —5/2 5/3 —23° /V/120
2 2 2/3 —z120% /24
2 1 2/3 2129%23/V/6
2 0 2/3 —21222232/2
2 -1 2/3 212023% /\/6
2 -2 2/3 —z1234 /24
3/2 3/2 -1/3 21223 /12
3/2 1/2 —1/3 —21222223/2
3/2 —1/2 —1/3 21222232/2
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SU(3) basis polynomials for the space of f;’s (ctd.)

I I Y Y
3/2 -3/2 -1/3 —212233/V/12
1 1 —4/3 —21329%2/V/12
1 0 —4/3 2132223/\/6
1 -1  —4/3 —21%232/V/12
/2 1/2  -7/3 21420 /V/24
/2 -1/2 -7/3 —z21%23//24

0 0 —10/3 —21°/4/120
(J1,42) = (4,1)

2 2 2 —z9t27 /V/24
2 1 2 29°2327 /6
2 0 2 —29223%27 /2
2 -1 2 2223327 |6
2 =2 2 —z3t2t /24
5/2 5/2 1 225/ V24
5/2 3/2 1 2% (2223 — 42323)/ V120
5/2 1/2 1 —22°23(22025 — 32323) / V60
5/2 —1/2 1 20237 (32223 — 22323) /V/60
5/2 —3/2 1 —23° (42923 — 2323)/V/120
5/2 —5/2 1 232y /v/24
3/2  3/2 1 2% (5212 — 2025 — 2323)/V180
3/2 12 1 —2%23(5212] — 2225 — 2325)/V/60
3/2 —1/2 1 2232 (5212] — 2225 — 2323)/V/60
3/2 -3/2 1 —233 (5212} — 2225 — 2323)/V/180
2 2 0 —2129%25 /6
2 1 0 —2129% (2225 — 32323) V24
2 0 0 212223(2225 — 2323)/2
2 -1 0 —2123% (32225 — 2323) /24
2 -2 0 2123°25/V6
1 1 0 —212°(2212F — 2025 — 2325)/ V24
1 0 0 212223(2212F — 2025 — 2323) /V/12
1 -1 0 —2123% (2212} — 2225 — 2’32§)/\/ﬂ
3/2 3/2 -1 21°29°25 /2
32 1/2 -1 217 20(2025 — 22323) V12
3/2 —1/2 -1 —21223(22025 — 2323)/V12
3/2 -3/2 -1 21223225 /2
12 12 -1 212z0(2n12] — 22023 — 2323) V12
1/2 -1/2 -1 —n1%23(212] — 2025 — 2323)/V12
1 1 -2 —2132025 /6
10 -2 —21% (2225 — 2323)/V12
1 -1 -2 2132325 /\/6
0 0 -2 —21%(z12] = 2(2023 + 2323))/ VT2

/2 1/2 -3 2423 //24
1/2 —-1/2 =3 2425 /24
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SU(3) basis polynomials for the space of f;’s (ctd.)

I I Y
(J1,72) = (3,2)

3/2 3/2  1/3
3/2 1/2  7/3
3/2 —1/2  17/3
3/2 —3/2  7/3
2 2 4/3
2 1 4/3
2 0 4/3
2 -1  4/3
2 -2 4/3
11 4/3
10 4/3
1 -1 4/3
5/2 5/2  1/3
5/2 3/2 1/3
5/2 1/2  1/3
5/2 —1/2  1/3
5/2 —3/2 1/3
5/2 —5/2 1/3
3/2 3/2  1/3
3/2 1/2  1/3
3/2 —1/2  1/3
3/2 —3/2 1/3
/2 1/2  1/3
1/2 -1/2  1/3
2 2 —2/3
2 1 -2/3
2 0 -2/3
2 -1  —2/3
2 -2 —2/3
11 -2/3
10 —2/3
1 -1 -2/3
0o 0 -2/3
3/2 3/2 —5/3
3/2 1/2  —5/3
3/2 —1/2 —5/3
3/2 —3/2 —5/3
1/2 1/2 -5/3
1/2 -1/2 —-5/3
11 -8/3

(G
22321*2/\/12

—29223272 )2
29232232 /2

—23%27 V12

— 232525 V6

—2022F (2023 —
— 2323)/2

* *
292327 (2224

—23227 (32925 —

2332525 /6

32323)/V24
2323)/V/24

—29227 (22127 — 2025 — 2323)/V/24
zozszy (22127 — 2225 — 2325)/V/12
—23227 (22127 — 2025 — 2323)/V/24

2232*2/\/

29223 (22222

32323)/v/60

29(29 22 — 620232525 + 323223%)/V/120
—23(320223% — 620232525 + 23%257) /V/120
23223 (32222 22323)/+/60
—233252/\/_
29225 (5212} — 2025 — 2325)/V/60
2o(2025 — 2232%) (5212} — 2025 — 2323)/v/180
23522225 — 2325) (52127 — 2225 — 2323)/V/180

23°25 (52127 — 2225 — 232%)/v/60

29(621227% — 82125 (2025 + 2325)+

(2225 + 2323)*)/v/360
—23(62122F2 — 8212F (2025 + 2323)+
(2225 + 2323)2)//360
—212222§2/2
— 2122025 (2225 — 232%)/2
—21(20223% — dzozz2hzf 4 23225%) /24
2123725 (2225 — 232%) /2
— 212322322
— 212025 (2212F — 2025 — 2323)/V/12
—21(2225 — 2323) (2212F — 2025 — 2323) /24
212325 (2212F — zo2s — 2323)/V/12
—21(2122F% — 32127 (2025 + 2325)+
(2225 + 2323)%)/V/60
21 22232/2
21225 (22025 — 2323) /12
21225 (2025 — 22323) /V/12
—21223232 /2
21225 (2127 — 2025 — 2325) /V/12
21225 (21 2F — zozh — 2323)/V/12
-2 2*2/\/_
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I I Y Y
10 -8/3 —21%2323/v/6
1 -1 -8/3 —z%237 V12
(jlaj?) = (370)
3/2 3/2 1 12253 /6
3/2 12 1 —r229%23/V/12
3/2 —1/2 1 12 29232 /12
3/2 =3/2 1 —12233/6
1 1 0 —r221 2% V12
1 0 0 7“2212223/\/6
1 -1 0 —r221232/V/12
/2 172 -1 7221229 /12
/2 -1/2 -1 —r22%23/V/12
0 0 -2 —1r?213/6
(J1,72) = (2,1)
1 1 4/3 —1r229227 /12
1 0 4/3 12292327 |\/6
1 -1 4/3 1223221 /V/12
3/2 3/2 1/3 1229225 /12
3/2 1/2 1/3 12 29(202% — 2232%)/6
3/2 —-1/2  1/3 _T223g22225; z32%)/6
3/2 =-3/2 1/3 r23°25 /V1
12 1/2  1/3 r220(32127 — 2225 — 2325) VT2
1/2 -1/2  1/3 —r?23(3212] — 2223 — 2323) /T2
1 1 -2/3 —1r2212925 /V/6
10 —2/3 —1r221 (2225 — 23235)/V12
1 -1 -2/3 2212325 /6
0 0 -2/3 1221 (212} — 2225 — 2323) /V/24
1/2 1/2 -5/3 r2z1225/V/12
1/2 -1/2 —5/3 221225 /12
(jlaj?) = (170)
/2 1/2  1/3 429 /4/40
1/2 —1/2  1/3 —rt23/1/40
0 0 —2/3 —rt21 /1/40

15.3.2. The Gram Matriz and its Eigenvalues for the Case U = SU(3)/SO(3). Let us now
evaluate the Gram operator f(l) of (15.90) with respect to the orthonormal basis polynomials
(15.105) described in §15.3.1. As mentioned earlier, we shall integrate over the whole of
U = SU(3), but Theorem 13.1 assures us that setting U = SU(3)/SO(3) will produce the
same results.

For the sake of brevity, let us agree temporarily to abbreviate the basis polynomials
¥(j1, 42,1, 13, Y;1) by z/JJ Here j labels the representation and stands for the pair (j1,j2);
likewise, p labels the the basis elements within the representation and stands for the trio
(I,I5,Y). The degree [ we shall make clear from the context. In the same manner we shall

abbreviate ¥(j1, 75, I',I5,Y") by wli,/ Using these abbreviations and the fact that the v’s
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carry irreducible representations of SU(3), we may write the action on 1/13 by the linear Lie
transformation £(u) in the form (¢f. (15.49))

(15.119) L] =" D7 (u)uwi).

Here we abbreviate the matrix representation of SU(3) in a fashion similar to the ¢’s: The
symbol D7(u) thus stands for the (unitary) matrix corresponding to the element u in the
SU(3) representation (j1, j2); and the subscripts 1 and v label the different triplets of (I, I3,Y")
that index the matrix entries in D (u).

Using (15.90), (E.6), and the abbreviations described above, we obtain the Gram matrix
elements with respect to the basis polynomials ¢ of (15.105):

P = (GATOL0)
15.120 _ 2 “1y,5 AW\ /H® —1y,,7"
(15120 -~ Tmrrn L J el el ).

SU(3)

We can apply to (15.120) essentially the exact same argument as was given in the case
n = 2 between equations (15.61) and (15.63). The present argument will differ on only the
following two points: (i) the n = 3 case does not have an extra label to distinguish different
copies of a given representation (see Theorem 15.1); (ii) we must use the formula (15.91) for
the dimensionality d(j1,J2) of the representation labeled by j (= (j1,j2)). Therefore, after
performing the integration over SU(3), we obtain the result

88 12 !
15.121 PWiugrwr = 172) g
( ) (D) jp.t T4+ 1)1+ 2)d(41,72) Z| v

Note that the 1/13 basis diagonalizes the Gram operator. Hence we obtain immediately the
Gram eigenvalues:

15.122 AB
( ) J1r2 (l+1)(l+2 (41, 72) Z} 07

Since the eigenvalues do not depend on p (= (I, I3,Y)), each has an associated degeneracy of
d(jlva)'

Before computing the Gram eigenvalues, we make three observations about the formula
(15.122). The first concerns an additional degeneracy in the eigenvalue spectrum that ap-
proximately halves the number of eigenvalues we need to compute. The second shows that
we need not sum over all the Q,(cl). And the third shows that we need not sum over all
the v (= (I,15,Y)). Together these three observations lead to a considerable computational
savings, and we demonstrate each in turn.

To prove the first observation, simply apply the symmetry relation (15.118) to our formula
for the eigenvalues, and use the fact that d(ji1,j2) = d(ja, j1):

AD 1L I3, Y
J2Jj1 (l—l—l)(l—l—Z j2,]1 ]CZ]CBI;‘ ]2 N 3 ) kaka>’
(15.123) — I I3 I,I5,-Y;l (ONANE:
(l+1)(l+2 (j1,72) ];;2[%;,‘ Yl 2, 1 I, =Y30), Qk2k3>‘
_ (@
)\jlj2'

We conclude that eigenvalues with j; # jo have a degeneracy of 2d(j1, j2), while eigenvalues
with j; = jo have a degeneracy of just d(j1,72). One therefore need not compute (15.122)
fOI‘, say, jl < j2-
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We now show that one need not sum over all the Q,(Cl) in order to obtain the Gram eigen-
values (15.122). To verify this, consider the linear symplectic Lie transformation P, = £(u..)
determined by the orthogonal matrix

oS = O

0 1
u.=10 0
10

By definition P, belongs to the SO(3) subgroup of Sp(6, R). Because L (u) stands for £(M (u)),
we can use (13.11) to determine the action of P, on the ¢’s and p’s:

—~~

q1 q1 q2
q2 q2 g3
q3 q3 q1

P = M(u =
“lm (ue) D1 D2
b2 P2 p3
D3 D3 p1

In words, P, effects a cyclic permutation on the indices for the ¢’s and, separately, also for
the p’s. It can be shown that P, is indeed a Lie transformation and that in fact

2w
15.124 P, = ex (—: —p3) + @2(ps — p1) + as(p1 — )
( ) (373 q1(p2 — p3) + @2(ps — p1) + g3(p1 — p2)
Since P, simply permutes indices, PCQECI) must be another one of the Q()’s—call it Q,(Cl/). Now

consider just the sum over v in (15.122). Because P, belongs to SO(3), hence also to SU(3),
we can use (10.10), (15.119), and the unitarity of the the representation D?(u) to obtain

S 1w @ = S 1(Pd, P = ST DY (we)uwr b, QU
=S NP oo [P [0, QU = D[ w . @) = S [(wd P

This result tells us that if Q,(cl) and Q,(cl,) differ only by a cyclic permutation of ¢g-indices, then
they contribute equal amounts to the Gram eigenvalues (15.122).
Now consider three other Linear symplectic transformations:

_ ,7/2:q2p3—qsp2:
P, =e"/ ,

(15.125) P, = em/2asm—nps:

Py = e™/2:a1p2—g2p1:

For each of these P, the Hermiticity of the Lie polynomial in the exponent (c¢f. (10.12))
guarantees that P, belongs to the SU(3) subgroup of Sp(6,R). (In fact each belongs to
the SO(3) subgroup.) Using an argument similar to that in Appendix D, one can sum the
exponential series (9.3) for each of the P, to determine their action on the ¢’s and p’s:

q1 q1 q1 —qs3 q1 q2
q2 q3 q2 q2 q2 —q1
P, | _ | 4 . P, 43| _ ol Py 43| _ a3
P1 n P —P3 P p2
b2 p3 D2 b2 D2 —P1
b3 —D2 D3 b1 D3 b3

Note that P, leaves g, alone and, modulo a sign, swaps the other two ¢’s; it acts similarly on

the p’s. It follows that each P, converts Qg) into another one of the Q’s (modulo a sign).
Applying to the P, in the last paragraph the argument used for P,, we now conclude

that if Q;ﬂl) and Q;ﬂl,) differ by any permutation of their g-indices, then they contribute the
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same amount to the Gram eigenvalues (15.122). We may therefore group the Q;ﬂl) into classes
according to the equivalence relation Q;ﬂl) ~ Q;Cl,) if one can be obtained from the other by
permuting the indices on the ¢’s. Now suppose that class ¢ contains N, elements and that

le) denotes a representative element. We may then write the Gram eigenvalues (15.122) in
the form

(15.126) A = 0+ 1)(1+2 ZN Z} v

31 32

To prove our last observation—that one need not sum over all the ¥/ in order to compute

the Gram eigenvalues—use (15.97a) to expand the Q,(Cl) of (15.89) in terms of the z’s. One
obtains the result
(1/v2)!

ng = S = s — Fo) Kol g (21 4 25) 7R 788 (2g + 23)k2 (25 + 23)

B V- 1521/—21:;; k! ks! MZ;M (l : kjl_ k?’) <f2> <f§) )

le*kz*ka*’r’l 22

k3

— — ks T T
k2 T223k3 T3Ziv< 125 225: 3

Using (15.112), we can determine the I3 eigenvalues for each term in this sum:
1 1
Ig = §(k2 — T9 — kg —|—T3 —T9 —|—T3) = 5(162 — kg) — (TQ —Tg).
Therefore as (ro — r3) ranges from —ks to +ko, Is covers the values

(15.127) Iy e {—3(ka+ks),..., 5(ks+k3)}

in unit increments. In other words, we need not include in the sum over v in (15.126) any
¥J whose I3 value does not belong to the range given in (15.127).%

One may perform for the eigenvalues Y an analysis identical to that just given for the
eigenvalues I3. Using (15.112), we find

1
Y:g(—2l+2k2+2k3+27‘1+[€2—T2—|—I€3—T3—|—2T1—T2—T3)

2 2
:—§l+(k2+k3)+§(27”1 —T2—T3).

As (2ry — rg — 13) ranges from —(ko + k3) to 2(I — k2 — k3), Y covers the values
(15.128) Ve {-32(2—ky—ks),...,5(2l —ky —k3)}

in increments of % if ko = k3 = 0 and in increments of % otherwise. We therefore need not
include in the sum over v in (15.126) any 7 whose Y value does not belong to the range
given in (15.128).

Putting our observations together we may now write the Gram eigenvalues in the form

15.129) AD =\ _ N, 0, I, I3, Y1), Q)2
( ) J1J2 7271 (l+1)(l+2 ]1 ,]2 Z I;‘ .717]27 3 L35 Ly )7Qc >| 9

where N, denotes the number of distinct Q,(jz)k?’ which are equivalent under permutation of

g-indices, and Qg) denotes a representative element from each equivalence class. In addition,

the sums over I3 and Y are constrained by (15.127) and (15.128), which of course depend on

the particular ( ).

; and the sum over I must be consistent with the possible values of I5.

29The form of the interval in (15.127) strongly suggests that the possible values of I are constrained to lie
in the set {Imm, e %(k)z + k3)}, where I,,;n equals 0 or % for even or odd values of (k2 + k3), respectively.
Although computations seem to bear this out, this conjecture has so far resisted proof.
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TABLE 15.9. The continuum limit Gram eigenvalues /\;-ll)j2 for three degrees
of freedom when U = SU(3). The last column lists the degeneracy of each
eigenvalue.

o~

. . l
(i j2) AL, degen,

83/82944 162
25/18432 180

1 (1,0) 1/6 6
2 (2,00 1/24 12
(1,1)  5/96 8
0,0)  1/12 1
3 (3,0)  1/80 20
(2,1)  3/160 30
(1,0)  1/32 6
4 (4,00 1/240 30
(3,1)  7/960 48
(2,2)  19/2160 27
(2,0)  1/80 12
(1,1)  7/480 8
(0,0)  1/48 1
5 (5,00 1/672 42
(4,1)  1/336 70
(3,2) 17/4032 84
(3,00  1/192 20
(2,1)  1/144 30
(1,0)  1/96 6
6 (6,00 1/1792 56
(5,1)  9/7168 96
(4,2)  11/5376 120
(3,3) 69/28672 64
(4,0)  1/448 30
(3,1)  3/896 48
(2,2) 31/8064 27
(2,0)  1/192 12
(1,1)  3/512 8
(0,0)  1/128 1
7 (7,0) 1/4608 72
(6,1)  5/9216 126
(5,2)
(4,3)
(5,0)
(4,1)
(3,2)
(3,0)
(2,1)
(1,0)

, 1/1024 42
, 5/3072 70
, 13/6144 84
, 1/384 20
, 5/1536 30
, 7/1536 6

Appendix I includes the Mathematica notebook used to compute the Gram eigenvalues
according to (15.129) for [ € {1,...,5}, and Table 15.9 summarizes the results.
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15.3.3. The Gram Matriz and its Eigenvalues for the Case U = U(3)/SO(3). In the last
section we listed in Table 15.9 the continuum-limit Gram eigenvalues for the restricted case in
which £(u) belongs to the coset space SU(3)/SO(3). Upon extending our results to cover the
whole of U(3)—which, according to Theorem 13.1, will yield the same results as U(3)/SO(3)—
we shall find, as claimed in §13.4, that the U(1) part of U(3) has no effect on the Gram
eigenvalues. In other words, the eigenvalues listed in Table 15.9 for U = SU(3)/SO(3) apply
also to the case U = U(3)/SO(3), or U = U(3).

To prove the claim made in the last paragraph, we begin by recalling the argument given in
§15.2.5 for U = U(2)/SO(2) in the case n = 2. With only minor modification, that argument
applies also for the present case. In particular, (15.78) becomes

2
- 2 do
(15.130) N ) 3 /dv/g RO)L©) |QVNQY| £(v)R(6),
k su@) 0
where, similar to (15.80),
61 2 2 2 2 2 2
(15.131a) R(0) = exp(—g 500 + 1+ gy TPyt g +p3):)

denotes a rotation operator that obeys (15.81). Now observe that we may use (15.101) to
write (15.131a) in the form

o * * * 0
(15.131b) R(9) = exp(—§ W(z12] + 2225 + Z3z3):) = exp(—g :T2:).

It follows from this expression and (15.111) that

R(0)z; = e 932,

(15.132) _
R(0)z; = 6“9/32;,
and
(15.133)
R(e)zlm erz 237“3 ZTNZSTSZ;TG _ e—i(h+r2+r3)9/3ei(r4+r5+r6)0/321r1 Z2T2 ZSTS ZTM Z;Ts Z;TG.

To determine how R () acts on the SU(3) basis polynomials ¢ (j1, j2, I, I3, Y;1), use this last
expression together with (9.6), (15.105), and the fact that the modified angular functions

) }}3])2, are of degree ji in the variables z; and of degree jo in the variables z7. We conclude
that

(15.134) ROV (1, g2, I, Is, Y1) = e 0720030,y o 1, 13, Y510).

Let us now evaluate the Gram operator I'(l) of (15.130) with respect to the orthonormal
basis polynomials (15.105). Using (15.81), the results of §15.3.2, and the same abbreviations
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used in (15.120), we find

() ju o = (BT D67
92 27rd9 ) |
PRSI, YR

SU@B) 0

27
__ 2 ([ itiinessith-isers )
(+Dl+2)\/ 2n
0

> fae (e ui Q)@ cw )l

k su(3)

2T
do i — i — il 1 1

1727

where the )\;ll)j2 denote exactly the Gram eigenvalues found in the previous section using
SU(3). (In the last step we have used the fact that d;;» means d; j16; j;.) It follows that the
SU(3) basis polynomials ¥ (41, j2, I, I3, Y;1) diagonalize the Gram operator also for the case
U = U(3)/S0(3), and the Gram eigenvalues remain unchanged from those given in Table 15.9.

15.4. Using the Manifold [U(1)]"

In this section we compute for n degrees of freedom the continuum-limit Gram eigenvalues
for the case in which the linear symplectic transformations £(u) belong to the space U =
[UM)])"=U1)®---® U(1) (n times). The analysis given here amounts to a straightforward
generalization of that given for n =1 in §15.1.

Linear symplectic transformations £(u) chosen from the space U = [U(1)]" have the form

(15.135a) L(u)=R(O1,...,0,) =R(01)... R, (0n),
where (¢f. (15.4))
(15.135b) R;(0;) = exp(—% :q; —i—p?:).

Observe that each R;(6;) obeys (15.81). Also, because they act independently on different
degrees of freedom, the R; all commute with one another. One may therefore construct
eigenfunctions of R (61, ..., 0,) simply by taking products of eigenfunctions of the constituent
R;(6;)-

In (10.7) of §10.2 we defined the general monomials Ggl)(q,p). For the present purposes
we shall find it convenient to give the same definition in a somewhat different notation:

(15.136a) GW(gp) =G4 .. Gl
where
Li=rj 1
(15.136b) G- 4B
7 (ZJ — Tj)! Tj!

These monomials must, of course, obey the homogeneity relation {; + --- + 1, = [ and have
r; €{0,1,...,1;} for each j € {1,...,n}.
Now define a complex linear symplectic Lie transformation 7 analogous to (15.7):

T=1,..T,
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where
i
T, = exp(g :qJQ» —p?:).

The 7}, like the R, all commute with one another. As a consequence 7 acts on phase space
according to the rule (¢f. (15.8))

(15.137) T <;§) = <szj) ,

where z; and 2} denote the generalizations of (15.5) given in (15.97). Note also that 7, like
its namesake (15.7), is unitary with respect to the inner product (10.9).

We can now write down the eigenfunctions of R (61, ...,60,). By analogy with (15.10) and
(15.11), the dynamical polynomial

lj—’l‘j (

() aW) — %
15.138a —_——
( ) Q/JJT] JTJ (lj — Tj)! ’I”j!

iz5)"

is an eigenfunction of the operator R; (0;) with eigenvalue e —i(li=27)%  Hence the dynamical
polynomial

(15.138b) O =760 = 7,61 . TGl = ) )

obeys the eigenvalue equation

(15.139) R(O1,...,0,)0p0 = e~ h=2r)00 . o=illn=2rn)0ny,(1).

As with our original wﬁl), the unitarity of the Lie transformation 7 guarantees that these
1/),@ form an orthonormal basis for the space of dynamical polynomials of degree [.

Let us now evaluate the Gram operator f(l) with respect to the orthonormal basis of
eigenfunctions of R(61,...,60,). Using (14.5), (15.81), and (15.139), we obtain the Gram
matrix elements

T(1) = () l>\r )y

T Ta e,
l n) Z/ / ! ".ﬁ<R(91’”.’0”)T¢$l)aQ§€l)>><

(15.140) QY R(61,....0,) w0

r!

2m

27
__ 1 Z/.../@...%e—ial—m—z;wr;wl...X
M(l,n) - 27 27
0

0
e~ iln —2r, =1, +2r/, <,¢ Q(l ><Ql(cl)7 ’Q/J(l/)> i




120 D. T. ABELL

To make further progress, we must examine the inner product <1/)£l), ,(Cl)>, and we can do this
by expanding the Q" in terms of the ¥{". Using (10.8), (15.98a), and (15.138a), we obtain

k1 k
1 .-.q

ki
o _ 4 = 1 i)y . *\ kK
Qk _m_:l:[\/ﬁ \/5 (ZJ+ZJ)
(L)Y oy kj)

/2 kj—r; Tj
o 1 kJ' Z_] (7’ j)
(15.141) - (5) ]:[Z o=t e
Tj

_ (%)lﬂ]};(—wﬂ\/ﬂ el
(3" Sy () () i vt

r1...T

Now use this result to compute the inner product of wil) with Q,(cl):

o A0y _ (1L vz Nt [ (R L) () (k1) (kn)
<1/}r an > - 5 Z (_7’) 7 B ., <1/} : 'wnrn 1/)1 e WYnr, >

T Ty

N2 |k k
_ ritetrn [ 2 n
_5l1k;1 5l ]C ( ) (2) (T:l) PR (Tn).

In a similar manner

12
0 . NP e, 1 k1 kn
QY vy = Ok, 1y« Ok 1y, () F T <§> (T,1> (7”41)'

Now take the product of these last two results and sum over k:

>, Ney v)

k
l
1 k k kn\ (kn
= Z 01,k Ok 1 =~ 01k, Ok, leTl Tk, (§> \/( 1)( 1) ( )( /)
r ) \r} rn) \rh
ki...kn
l
B 1 0N /L L\ (I
“sa (5 () () () ()

On inserting this result into our calculation for the Gram matrix elements and integrating
over #;, we obtain a 5TjT; for each j € {1,...,n}. Hence

D) = WORO]Y) = QZHM (1) = s le( )

As these elements form a diagonal matrix, they represent the eigenvalues of the Gram matrix
for the case in which U = [U(1)]™:

1 T (L
(l) = ’
(15.142) Ar M(l,n)2" (Tj)'
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Note that these eigenvalues depend on all of the indices {r1,...,rn,l1,...,l,} that define
the ¢{". In addition, observe that for n = 1 we recover from (15.142) the result originally
obtained in (15.16).

For the cases of especial interest—two and three degrees of freedom—we may put (15.142)
in the following particular forms: For n = 2,

o _ 1 L=J3\ (7

15.14 o -

(15143 = () Q)

where j € {0,...,1},r€{0,...,l—j},and s €{0,...,j}. And for n = 3,
o 1 l—3—k\/(J\ [k

(15.144) %““_(L+Ua+2mll( r )Q)(t’

where j € {0,...,1}, k€ {0,...,1—j},re{0,....l—j—k},s€{0,...,5},and ¢t € {0,... k}.
Appendix I includes the Mathematica notebook used to compute the Gram eigenvalues ac-
cording to (15.143) and (15.144) for [ € {1,...,5}. Table 15.10 summarizes the results. On
comparing Tables 15.7, 15.9, and 15.10, we note that, at least for the cases calculated, the
minimum Gram eigenvalues for U(n)/SO(n) and [U(1)]" are the same.

Table 15.10: The continuum limit Gram eigenvalues for two and
three degrees of freedom when U = [U(1)]".

l AD(n =2) degen. AD(n =3) degen.
1 1/4 4 1/6 6
2 1/12 8 1/24 18
1/6 2 1/12 3
3 1/32 12 1/80 38
1/16 4 1/40 12
3/32 4 3/80 6
4 1/80 16 1/240 66
1/40 4 1/120 24
3/80 8 1/80 24
1/20 5 1/60 9
3,/40 2 1/40 3
5 1/192 20 1/672 102
1/96 4 1/336 36
1/64 8 1/224 48
1/48 8 1/168 30
5/192 4 5/672 6
1/32 8 1/112 24
5/96 4 5,/336 6
6 1/448 24 1/1792 146
1/224 4 1/896 48
3/448 8 3/1792 72
1/112 8 1/448 54
5,448 8 5/1792 24
3/224 8 3/896 54
1/56 4 1/224 13
9/448 4 9/1792 12
5,224 8 5/896 24
3/112 2 3,/448 6
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Gram eigenvalues for [U(1)]" (ctd.)

AD(n =2) degen. AD(n =3) degen.
15/448 4 15/1792 6
5/112 2 5/448 3
1/1024 28 1/4608 198
1/512 4 1/2304 60
3/1024 8 1/1536 96
1/256 8 1/1152 78
5/1024 8 5,/4608 48
3/512 12 1/768 84
7/1024 4 7/4608 6
5/512 12 1/576 24
3/256 8 1/512 24
15/1024 8 5/2304 60
9/512 4 1/384 42
5,256 8 5/1536 24
21/1024 4 1/256 12
35/1024 4 5/1152 24

7/1536 6

35/4608 6




16. RETURN TO THE DISCRETE CASE

In the last section we determined the Gram eigenvalues in the continuum limit as a means
of characterizing the quality of different sets of linear symplectic transformations £; for use
in jolt decompositions of the form (11.2). To implement jolt decomposition on a computer,
we now return to the discrete case asking, “Do there exist sets of £; which yield the optimal
Gram eigenvalues found in (15.16) and Tables 15.6, 15.7, 15.9, and 15.107” This question
leads very naturally to a study of minimal formulas for numerical quadrature and cubature3’
on the various group manifolds studied in §15.

16.1. One Degree of Freedom

In the case of one degree of freedom, n = 1, let us begin our study by examining the Gram

matrix elements. Taking matrix elements of the Gram operator (15.2) with respect to the

(real) general monomials G| we obtain

(16.1) - / 6 (GO ROQWR(O)QV,GV).
One rather obvious method for returning to the discrete case replaces the above integral by
a suitable quadrature formula [50]. Hence we rewrite (16.1) in the form (c¢f. (11.9))

N

(16.2) L(l)rs = > w; (G, R,QVNR,QV, 60 |

Jj=1

where R ; denotes R(6;), and where the quadrature formula chosen determines the angles 0;
and the weights w;. (Note that here the weights w; play the role of the factor 1/N in (11.9);
henceforth, where appropriate, we shall make this replacement.) The reader might guess that
a sufficient number of 6;’s spaced evenly about a circle with equal weights would give the
best results, and indeed such a choice leads to the optimal Gram eigenvalues given by (15.16).
To put this choice in perspective, however, we shall study the full range of possibilities that
(16.2) allows.

16.1.1. The Gram Matriz Elements. We can obtain a formula for the Gram matrix elements
(16.2) by straightforward computation. First note from (15.1), (15.3), (15.4), and (15.9) that

R; Q(l) =R )\'jl_ \/_(qcosﬁ +ps1n9 Z< > qcos@ “"(psinb;)"

_ ! PRVECTRURCI it N -
2> m(cos i) sin j)m—z oGSt

where here, in the last step, we have abbreviated cosf; by c; and sinf; by s;. We therefore
obtain for the sensitivity vectors (recall (11.4)) the result

0 I 1/2 l
T (1 —Tr T
(16.3) of =(GY,R;Q{") = <7~) sy

On defining the (not necessarily square) matrix S(I) having elements
1\ 12
(16.4) S)rj = wj o] = \/w; (r) cé-frs;,

30The multi-dimensional generalizations of quadrature formulas are called cubature formulas [18].

123
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we may, since the sensitivity vectors are real, compute the Gram matrix according to I'(l) =
S(1) - S(l). In other words, the Gram matrix elements are

1/2
(16.5) L(),s = Z S)r;S(1)s; = [(i) (i)] ijcil*(wrs)s;ﬂ.
J J

16.1.2. Choosing Angles Randomly. If we could not find a good quadrature formula to use in
(16.2), we might, for lack of a better alternative, try making random choices for the angles
6; and weights w;. To gauge how well or poorly such an approach might work—especially
for the higher-dimensional cases having no obvious cubature formulas—Ilet us examine the
particular example of I = 4 in one degree of freedom. For this example (15.16) gives the
continuum-limit Gram eigenvalues,

1 1 3 1 1
16> 4> 8 4’ 16’
and hence the best possible minimum Gram eigenvalue is

1
— = 0.0625.
16

In addition, the continuum-limit Gram determinant is
3 3
215 32768
According to Table 13.1, we shall, for | = 4, need at least N = 5 angles and their cor-
responding weights. (We shall soon see that in fact N = 5 suffices.) The angles may be
chosen randomly from the interval [0, 2], but the weights require a little more consideration:
At a bare minimum the quadrature formula should work for a constant function, and this
requirement implies that the weights w; should satisfy the constraint

~9.155 x 107°.

N
(16.6) > wy=1.
j=1

Using (16.5) with 1000 sets of five positive random weights constrained to have unit sum and
five random angles chosen from the interval [0, 27], Figure 16.1 shows a plot of the Gram
determinant versus the minimum Gram eigenvalue. Using the same angles and weights,
Figure 16.2 shows a histogram of the minimum Gram eigenvalues. As the reader will note,
almost all of the sets of R; (determined by the 6;) and their corresponding weights lead to
very small minimum Gram eigenvalues and Gram determinants. Indeed, roughly % of the
sets lead to values at least two orders of magnitude smaller than optimal, and all but a few
dozen lead to values at least one order of magnitude smaller than optimal. If one does not
choose the weights w; randomly, but instead defines either equal weights, w; = 1/N, or
proportional weights, w; o< ;11 — 6;_1 (again with the constraint (16.6)), then the resulting
Gram matrices yield results very similar to those shown in Figures 16.1 and 16.2 for random
weights.

As suggested earlier, and as we prove later in §16.1.6, choosing five angles 6; spaced equally
about a circle together with five equal weights w; = % yields, for [ = 4, a Gram matrix having
eigenvalues identical to those for the continuum-limit. To gauge the sensitivity of this “equal-
angle formula”, let us briefly examine how small random deviations from equally spaced angles
affect the resulting Gram eigenvalues and determinant. Figure 16.3 shows the determinant
versus the minimum eigenvalue for 1000 different Gram matrices built using random angular
variations of not more than +27/50 (= £7.2°) about the choice of equally spaced angles,
0; = 2nj/5 for j € {0,1,...,4}. For direct comparison Figure 16.4 shows the result of
combining Figures 16.1 and 16.3.

The reader will note that the upper-right-hand-most point in Figure 16.4—the point cor-
responding to equally spaced angles or, equivalently, to the optimum values found in the
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0.00010 .

detl(4)
0. 00008}
0. 00006
0.00004 |
0.00002¢

T, . )
0.00 . 0.02 0.03 0.04 0.05 0.06

FIGURE 16.1. This plot shows the Gram determinant detT'(4) versus the
minimum Gram eigenvalue )\gszn for 1000 different randomly chosen sets of
five angles 6; and five weights w;, subject to the constraint (16.6). The Gram
matrices were evaluated using (16.5) with [ = 4. The continuum-limit values

would produce a point near the upper-right-hand corner of this plot.

700t

600

500t

400

300¢

200¢

100¢

4
Aoin

ﬂnnn o
0

0. 0000 0. 0125 0. 0250 0. 0375 0. 0500 0. 0625

FIGURE 16.2. This histogram shows for the same Gram matrices as used in
Figure 16.1 the number of occurrences of a minimum Gram eigenvalue in a
given range of values.

continuum limit—appears to represent a maximum for not only the smallest Gram eigen-
value Agﬁgn but also for the Gram determinant detI'(4). This pattern also holds for values
of [ besides | = 4. That the maxima of these two functions should coincide seems rather

remarkable, indeed hard to understand: if one chooses a different normalization for the gen-
O]

eral monomials Gg), then the maxima of A, and detT'(l) may no longer coincide. If, for

example, one omits the denominator from the definition of the Ggl) in (10.7), then the choice
of equally spaced angles leads to a maximum only for det I'(!). Recall, however, that we have
chosen to maximize the eigenvalue )\f,ll)m based on the role it plays in our upper bound (12.4)
for the jolt strengths a(!). But the calculation given in (12.3) suggests that having large val-

ues for all of the Gram eigenvalues should also prove useful, and hence maximizing det I'(])
is probably also a worthy goal. That the maxima of AY and det I'(1) should coincide (see

min



126 D. T. ABELL

0. 00010 .
detl (4)
0. 00008}
0. 00006 R
0. 00004}
0. 00002}
Avan

0.00 0.01 0.02 0.03 0.04 0.05 006

FIGURE 16.3. This plot shows the Gram determinant detT'(4) versus the

) for 1000 different Gram matrices obtained

minimum Gram eigenvalue A, ..

using (16.5) with equal weights w; = % and angles 0; = 275 /5 + r; where
r; denotes random numbers chosen from the interval [—27/50, 27/50]. The
upper-right-hand-most point in the plot corresponds to the “equal-angle”

case of r; = 0 or, equivalently, to the optimum values found in the continuum

limit.
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0. 00006t
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FIGURE 16.4. This plot combines the results shown in Figures 16.1 and 16.3.

the end of §16.1.4 for further discussion) when we use the normalization in (10.7) and (10.9)
suggests that that choice of normalization is a particularly good one.

16.1.3. Searching for Good Sets of Angles. The results shown in Figures 16.1 and 16.2 suggest
that random choice does not work well for producing sets of angles and weights that make
the minimum Gram eigenvalue as large as possible. As an alternative to random choice we
may use some kind of search (optimization) procedure to hunt for good sets of angles and
weights. We have tried several such procedures, but with limited success. Only genetic
algorithms—often called GAs—seem particularly promising.

A proper description of how GAs work is outside the scope of this thesis, but, very briefly,
they work as follows.?! The parameters to be varied (in our case the angles and weights) are

31Genetic algorithms come in a variety of flavors; here we describe a “plain vanilla” GA.
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stored in a long string, or chromosome, using a binary encoding or some other similar format.
The quantity to be optimized (in our case the smallest Gram eigenvalue) is then defined
as a function that determines the fitness of a given chromosome. Starting with an initial
population of individuals—each individual defined by a single chromosome—a GA evolves
successive generations using the principles of natural selection and genetic recombination.
Starting with an initial population of size 2p, a GA randomly selects individuals—with a
probability weighted according to their fitness—to form p pairs that serve as “parents” for
the succeeding generation. This means, of course, that individuals, i.e., chromosomes, with
a high relative fitness will very likely “mate” several times (with different individuals), and
individuals with a low relative fitness may not mate at all. Thus do GAs incorporate the
principle of natural selection. After selecting the p sets of parents, a GA then produces
two “children” from each set of parents (hence every generation contains 2p individuals) by
using various genetic operators modeled on processes found in real biological systems. Most
common are the crossover and mutation operators. One version of the crossover operator
places the parent chromosomes side by side, chooses some point at random along the pair,
and then interchanges all of the genetic information to the right of that point. Thus the
parents

XXXXXXX

YYyyyyy
may produce the children

XXXXYYY

VYYyXXX.
Using a variation called two-point crossover, the same parents might produce the children

XXYYXXX
YYXXYYY -

The mutation operator, as its name suggests, simply alters, with some appropriately low
probability, a single bit in an individual chromosome. Thus

XXXXXXX

may become
XYXXXXX .

After determining the fitness of each child in the new generation, the GA repeats the process
with those children as parents of the next generation. In typical applications the GA ter-
minates after either the current generation’s genetic diversity (defined by some appropriate
measure) drops below a predetermined minimum or the number of generations exceeds a
predetermined maximum.

Genetic algorithms have proved adept at tackling a variety of computationally difficult
tasks, including the well-known Traveling Salesman Problem [22]. Although they do not work
well for determining exact answers, GAs excel at finding approximate answers near global
optima: they are not easily fooled into settling on local optima. From the above description,
GAs may sound rather ad hoc. There does, however, exist a body of mathematical work that
gives some justification for why GAs appear to work so well [45]; and there exists an expanding
literature on both the theory and the applications of genetic algorithms. The interested reader
may consult the review article by Forrest [40] or the new journal Fvolutionary Computation
[23].

Figure 16.5 shows the Gram determinant detI'(4) versus the minimum Gram eigenvalue
)\Sgn for the best individual found in each of sixty-four different runs of a genetic algorithm.
Each run of the GA evolved for at most fifty generations using a population of size sixteen
in an attempt to maximize Afﬁgn. In the case shown here, only the angles were varied; all
the weights w; were held fixed at the value % Shown in Figure 16.6 are the angles for the
best thirty-two of the individuals shown in Figure 16.5. The reader will note in that figure
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FIGURE 16.5. This plot shows the determinant det I'(4) versus the minimum
(4)
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netic algorithm with a fitness function given by A
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FIGURE 16.6. This graphic shows on separate circles the sets of five angles
corresponding to each of the best thirty-two individuals shown in Figure 16.5.
Here 0 increases in the counter-clockwise direction from an origin, § = 0, at
“three’o’clock”. The sets of angles are displayed so that as one “reads” from

for sixty-four different Gram matrices obtained using a ge-
)

min’

eigenvalue \
(See the text for more

left to right and down the page the value of /\5;27I decreases monotonically.

that only one of the sets of angles looks clearly like the case of equal spacing (top row, third
from the left). The reader may also notice certain patterns amongst the various sets of angles
illustrated in Figure 16.6. In particular, those sets comprise just four arrangements of angles,

DVED

rotated by varying amounts. Furthermore, one may transform any of these arrangements into
any other simply by adding 7 to one or more of the angles. We shall during the next two
sections examine the origins and implications of these patterns.
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16.1.4. The Gram Determinant. For a certain subset of Gram matrices I'(l), namely those
obtained using N = [+ 1 angles, we can evaluate the determinant analytically. The result
we find will illuminate some of the patterns seen in Figure 16.6.

Using N = [ 4+ 1 angles makes the matrix S(I) defined by (16.4) a square matrix. Since

(1) = S(1) - S(1), it follows (in this case) that
det (1) = (det 5(1))°,
and hence it suffices to compute det S(I). First note that
1/2 1/2 1/2
VW1 ({);2 ‘i VW2 (92 ch T Wi+1 ({);2 C§+1
sy VIO A ) e () st

1 \/w_2(§) 52 le+1(§) Si+1

1/25l 1/2 1/2
! l !
P U R o
I+1 l 1/2 —1.1 T —1.1
INY? | sy sy Cl+151+1
=1Ivwi-11 1 - -
] r . : . :
=t =0 I 1 ' !
51 52 T Si+1
1 1 ... 1
1 41 1
ot oty
= . 9
V| l
thoth et
where t;, denotes si/cip = tanf;. The determinant that remains in this expression is a
Vandermonde determinant and has the value
1 1 --- 1
1 41 1
ot oty
- . . 1<j<k<i+1
tho o
1 U2 1+1

Now observe that this product has [ factors that contain a ¢, [ factors that contain a to, and
so on. We may therefore write

I[Md- I G-th= II aa-t)
% 1<j<k<l+1 1<j<k<l+1
= H(sin ) cos; —sinb; cosby) = H sin(0 — 6;),
j<k i<k

and hence

(16.7) det S(I) = [T w:i - I1 (i) -] sin(6x — 65).
7 T i<k

We conclude that

16.8 det T(1) = (det S(1))* = [T ws - (l> sin? (6 — 0
(16.8) (>(<>)Hﬂrg<g>
for Gram matrices obtained using N = + 1 angles.

Because our result (16.8) says that the Gram determinant depends only on the differences
between the various angles, at least when N = [ + 1, we may immediately deduce that
changing all [ 4+ 1 angles by some fixed amount ¢ does not alter the Gram determinant. This
conclusion conforms with our earlier observation that the various arrangements of angles seen
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in Figure 16.6 appear in many different orientations. We shall see in the next section that
this conclusion holds for arbitrary Gram matrices I'(7).

Because sin(a + m) = —sina, we may also deduce from our result (16.8) that adding =
to one or more of the [ + 1 angles does not alter the Gram determinant. This conclusion
conforms with our observation that one can transform between the various arrangements of
angles seen in Figure 16.6 simply by adding 7 to one or more of the angles. In the next
section we shall learn that adding 7 to one or more of the angles §; has in fact no effect at
all on the general Gram matrix I'(l). It follows, of course, that adding 7 to one or more of
the angles can have no effect on the determinant of arbitrary Gram matrices.

One may also deduce from our result (16.8) that if any two angles 6y, and 6; differ by an
integer multiple of 7, then the Gram determinant will vanish. Note that for odd degree [ this
means that [ + 1 equally spaced angles cannot work, for then the determinant of T'(l) will
equal zero, and hence the Gram matrix will not satisfy the invertibility requirement. We shall
see more clearly why this happens when we study minimal quadrature formulas in §16.1.6.

We conclude this section by demonstrating that when [ is even the choice of equally spaced
angles and equal weights leads to an extremum for the Gram determinant in (16.8). To test
for an extremum with respect to the angles, we check that

0
00;

for each of the [ + 1 angles ¢;. First note that 0y, sin(6; — 0;) = cos(6; — 0;) = sin(0; —
0;) cot(0; — 0;), and, similarly, 9, sin(0y — 0;) = —sin(0 — 0;) cot(0x — 0;). Therefore, using

(16.7) and writing A(l,w) for /T, wi - [, (i), we obtain

det S(I) = 0

0 0 :
26, det S(1) = A(l, w) 20, gcsm(ﬁk —0;)

= A(l,w) [ [ sin(0x — 0;) - <Z cot(0; — 0,) = > _ cot (6, — 91-))

i<k v<i v>1i

=det S(1) - Y _ cot(f; — 0).

v#i

Assuming that det S(I) # 0—since we require an invertible Gram matrix —we need check
only that

Zcot(@i —-60,)=0.

v#£i
For N = I + 1 equally spaced angles let us write 6, = Z¥ for v € {0,1,...,1}. (We could,

I+1
of course, use instead 0], = 0, + ¢ for any fixed ¢.) Then, as one may confirm by drawing a

picture or doing some algebra, we find

!
Zcot(@i —0,) = Zcot(l?:l(i — V)) = Uz_lcOt(fIVl).

v#£i v#£i

By using the same picture or doing a little more algebra, one may also confirm that

for even values of I. Hence the Gram determinant of (16.8) has an extremum when [ is even
and the angles are equally spaced. In addition, because cot(6 + m) = cot 8, this conclusion
holds also for any of the four arrangements of angles seen in Figure 16.6.
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To test for an extremum with respect to the weights, we check that

0

for each of the N = [+ 1 weights w;—subject to the constraint (16.6). From (16.8) it follows

that we must have 5
— | |wi =0,
8wj 1:[ !

again subject to the constraint (16.6). A straightforward application of the method of La-
grange multipliers yields the solution
11
YN TIFT
independent of j. Putting this result together with that of the last paragraph, we now see
that for even degree [ the Gram determinant (16.8) has an extremum when the weights w; are
all equal and the angles ¢; form any of the four arrangements of angles seen in Figure 16.6.

16.1.5. Properties of the Gram Matriz. In the last section we learned that, at least in certain
cases, the Gram determinant does not change when we add a fixed amount ¢ to all of the
angles. This fact suggests that perhaps in general the entire spectrum of Gram eigenvalues
does not change. This is indeed true, and is in fact a simple consequence of the following
theorem and its corollary, which, for future reference, we state and prove for any number of
degrees of freedom.

Theorem 16.1. Let us use the partial Gram operator of (13.20b) or (14.5b) to define a
partial Gram matrix I'(u,l) with elements

B M(]zL ) ST(ED, L)W L)Y, GV .
’ k

In addition, let L(v) denote any fized linear symplectic transformation in the U(n) subgroup
of Sp(2n,R). Now suppose we replace L(u) with L(v)L(u) = L(uv) = L(u'). Then

(16.9) L (w,1)rs

(16.10) L/ 1) = VD (u,)VT,
where V denotes the unitary matriz with elements
(16.11) Var = (GD, L()GY) .

In other words, the partial Gram matrices T'(u/,1) and I'(u,l) are related by a unitary simi-
larity transformation.

Proof. First recall that the monomials G( ) are orthonormal with respect to the inner product
(10.9) and form a basis for the space of f;’s; hence we may write the identity operator in the

dyadic form
> le) (e

Now observe that we may write the partial Gram matrix elements I'(v/, 1), in the form

L' s = 57 & 5 S GD, L) L@QP W Lw)QY, L(v) GV
’ k

Inserting the above form of the identity operator into I'(u/,!) in two places—after the £(v)
and before the E(U)T—We obtain

T, D), ln 22 (6, Lwe)ED. £ K)o

(L)Y, GOWGY, cw)aV)y.
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Because the operator £(v) is unitary with respect to the inner product (10.9), the quantities
Vap defined in (16.11) must constitute the elements of a unitary matrix V. Hence we may
now write

Rt = 0oy 0 2000 )6 i
’ k

aa’

In matrix form this expression becomes (16.10) and therefore completes the proof. |

Corollary 16.1. Define L(v) for fized v as in Theorem 16.1. Then, in either the discrete
or continuum-limit cases, replacing every L(u) by L(v)L(u) in the Gram matriz T'(l) simply
effects on T'(l) the unitary similarity transformation generated by the matriz V of (16.11).

Proof. According to (13.20) and (16.9), we may in the discrete case write the Gram matrix
as

(16.12) L) =Y wT(u;,1),

where here, as in (16.2), we use weights w; in place of the factor 1/N. By Theorem 16.1,
replacing every L£(u) by L£(v)L(u) = L(u") produces the new Gram matrix

Iy = ijr(u;, l) = ijvr(uj, Hvt = V(Z w; T (uj, z))vT =vrivt,

where V denotes the unitary matrix with elements (16.11). This proves the corollary in the
discrete case. In the continuum-limit case the proof is essentially identical, but it starts with
(14.5) rather than (13.20). |

The alert reader will have noted that both Theorem 16.1 and Corollary 16.1 remain true
if we replace the basis monomials Gg) by a different set of orthonormal basis functions, say
.

Let us now reconsider the matter of adding a fixed amount ¢ to each of the angles 6;
that define the linear symplectic transformations R; = R(f;) in (16.2). Since R(0; + ¢) =
R($)R(6;) where R denotes the unitary operator defined in (15.4), Corollary 16.1 implies
that rotating all the 6; by ¢ will change the Gram matrix only by a unitary similarity
transformation. But since the application of any similarity transformation to any matrix
cannot change the eigenvalues of that matrix, we conclude that the eigenvalue spectrum—
and hence also the determinant—of the Gram matrix is invariant under a rotation of all the
angles 6; by an arbitrary amount ¢.

Let us now turn to our observation that, at least in certain cases, the Gram determinant
does not change when we add 7 to one or more of the angles ;. Since

[cos(8; + )2~ [sin(8; + 7)]"F® = (= cos0;)? ="+ (—sing;) Tt
= (cos Hj)Ql*(T“) (sin®;)"+*,

we conclude that in fact adding 7 to one or more of the angles ; has no effect even on the
general Gram matrix elements I'(),s given by (16.5). One may reach this same conclusion
in a more general fashion by noting from (15.3) and (15.4) that

(16.13) R () (;) =_ (Z) ,

and hence, because Rngl) is a homogeneous polynomial in ¢ and p of degree [,

(16.14) R(mR,QY = (-1)'R,Q".
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Then, because adding 7 to ¢; converts R, to R(m)R;, we conclude that adding 7 to 0;
modifies the summation (16.2) for the gram matrix element I'(1),s by simply multiplying the
j-th term by (—1)2 = 1, which means no modification at all.

We note here that the property derived in the last paragraph is really a reflection of the
fact that adding 7 to some of the angles 6; changes at most the signs of the corresponding
jolt strengths in the jolt decomposition (11.2). To see this, first observe that in one degree of
freedom the jolt decomposition (11.2) takes the form

N
l l
(16.15) hy = E wja§- )RjQ§ ),
j=1

where le) is given by (15.1). Then, using (16.14), we see that adding 7 to #; simply changes

the jolt strength agl) by the factor (—1)L.

Before going on to the next section, we mention one further property of the Gram matrix
T'(I). First observe that the continuum-limit Gram matrix elements I'(),s given in (16.1)
do not change if we add to the integration variable 6 some fixed angle ¢ or if, equivalently,
we replace R(0) by R(¢)R(0) (again for some fixed ¢). Now suppose that the discrete form
(16.2) of the Gram matrix elements derives from some quadrature formula for the circle which
yields exact results for all functions in some important set F. (In our case the functions of
interest are the products of sensitivity functions for all degrees [ up to and including some
maximum degree P.) Then because that quadrature formula is exact on F, we will obtain the
same results if we replace all the R; in (16.2) by R(¢)Rj. Put another way, if the quadrature
formula we choose is exact for the functions appearing in our Gram matrix elements (16.2),
then replacing R; by R(#)R; will not change I'(l). On the other hand, according to one of
our earlier arguments, if the quadrature formula we choose is not exact, then replacing R;

by R(¢)R; will change I'(l) but not its eigenvalue spectrum.

16.1.6. The Minimum Number of Angles. To perform jolt decomposition on a computer, we
would like to replace the integral in (16.1) with the summation in (16.2) using an appropriate
quadrature formula whose angles and weights we will then insert into (16.15). To perform jolt
decomposition while retaining the optimal Gram eigenvalues found in the continuum limit, we
would like that quadrature formula to be exact for all products of sensitivity functions that
appear in the Gram matrix elements (16.1) up through some maximum degree l,;,q, = P. And
to perform jolt decomposition quickly, we would like to use a minimal quadrature formula,
i.e., a quadrature formula that needs as few angles as possible while still returning exact
results through degree P. In this section we shall determine just such a quadrature formula.

To proceed, we must first determine which functions appear in the Gram matrix elements
I'(l)rs in (16.1) for degrees I < P. Using (16.1) and (16.3), we see that the functions of
interest are

(cos 0)2=("F9) (sin §)"F*

forl € {1,...,P} and r,s € {0,...,l}. Putting these functions in exponential form,
(eie 4 efie)gl_(r_;,_s) (eié’ _ e*ie)r_;,_s
cre —

| (e

ab

1

yields a linear combination of exponential functions of the form (e?)2(=#) with u € {0, 1,
..., 2l}. We therefore seek a quadrature formula on the circle S which returns exact results
for all functions of the form

(16.16) e ke{PP-1,...,—P}.
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Recall that

1 27

(16.17) — [ dhe™ =5,0.
2w

Now consider the following N-point quadrature formula for the circle S*':

N—
(16.18) Qnlf(0)] = Z (251)

7=0

Inserting the exponential functions (16.16) into the quadrature formula (16.18), we find

QN z20k _ 1 Nzlez%zm/zv ]ijz_l(ei%%/]v)j'
JZO 3=0

For k = 0, this sum returns the value 1, in agreement with the exact answer in (16.17). For
k # 0, we obtain

) 1 1— ei27r2k

QN [6129}%} — N . ma
which will return the correct answer 0 as long as the denominator does not vanish. This means
we must select N so as to ensure that 2k/N is not an integer for any k € {P,P—1,...,—P}.
It follows that choosing N > 2P will certainly work; but observe that choosing any odd N
greater than P will also work because such an N cannot divide any of the integers 2k €
{2P,2P — 2,...,—2P}. Hence we find the smallest value of N that makes the quadrature
formula (16.18) return the exact results (16.17) for all of the exponential functions in (16.16)
is given by

P+1, P even;
(16.19) Npmin =2[P/2]+1= {P—i— 2. Podd.
(Here [P/2] denotes the smallest integer greater than or equal to P/2.) Put another way,
Npin equals the first odd integer larger than P = l,,4,, the highest degree of interest (cf.
(9.20)).

We have in (16.18) an N-point quadrature formula which, for N equal to the Ny, of
(16.19), is exact for all degrees | < P. Now recall from Table 13.1 that for one degree of
freedom, n = 1, the lower bound on N is P + 1. Comparing this lower bound with (16.19)
proves that our quadrature formula is minimal for even values of P. It seems reasonable to
believe—but we offer no proof—that the formula is minimal also for odd values of P.3?

As a simple check on our work, let us compute the Gram determinant det I'({) from (16.8)
using the angles and weights defined by the quadrature formula (16.18). The result should
agree with the product of the continuum-limit Gram eigenvalues given in (15.16): in other
words, we should find

(16.20) det (1) = (%)mi{o (7{)

Before continuing, observe that because (16.8) requires exactly N = [ + 1 angles, (16.19)
implies that this check will work only for even values of [.

321f we restrict ourselves to equal weights only, then it follows that our quadrature formula is minimal also
for odd P.
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Setting N = [ + 1 and using the angles and weights defined by the quadrature formula
(16.18), we obtain

det (1) = ] % 11 <i> - I sin? (%(k —j))

1<j<k<l+1
() O PG B )]

because the set of j and k such that 1 < j < k <[+1 includes [ pairs whose difference equals

one, [ — 1 pairs whose difference equals two, and so on. Then, because — Sin(%(l +1 —j)) =

sin(m), the above result becomes

+1
wori- () () 4 (2]

I+1

+1

i 1/2 .
_ l 1 . of 2m]
- (r) gl (z+1)
r L j=1
I+1

N[ 2 o e ,
r) : _l—l——ljl:llsm(l—l-—l)(_l) Sm(l—l——l(l +1 —j))
- 1+1

l (-2 L (27rj)
r+1 LT

r J

Gradshteyn and Ryzhik [47, 1.393.2] report the product trigonometric identity

! .
. [ 2m) (=2
(16.21) jl:[osm(m + :v) = sin(l + 1)z

for even values of 1.3 Dividing both sides of this expression by the j = 0 term and taking
the limit x — 0 yields the identity

l .
. 27T_7 i l/21+1
Hlsm(m) = (D"

Using this result, we may now write the Gram determinant in the form (recall that [ is even)

der() =T (Z) ' [(1_17)11/2<—1>”2l;—11r1 = (%)Hl 11 (Z)

which agrees precisely with our expectation (16.20).

330ne can prove this identity by the following line of reasoning: Define U(z) to be the product on the
left-hand-side and compute the logarithmic derivative V(z) = U’'(2)/U(z) = 3, 1/tan(% + x). Then,
using arguments from complex analysis, show that V = W, where W(z) = (I + 1)/tan(l + 1)z. (To do
this, first show that for even [ the functions V' and W have the same principal parts and hence differ by at
most an entire function. Then show that V and W agree at infinity and are bounded there. It follows that
V — W must be a constant equal to zero.) To complete the proof, integrate both sides of V.= W to obtain
U(xz) = C;sin(l 4+ 1)z, where C; denotes the integration constant. Then determine C; by examining U (iy) at
large y and thus confirm (16.21).
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16.1.7. Optimal Jolt Decompositions in One Degree of Freedom. Let us summarize what we
have learned so far. In one degree of freedom using the quadrature formula (16.18), one can
obtain optimal jolt decompositions for all homogeneous dynamical polynomials

M(1,2)
m= Y @G
r=1
of degree | < P by writing (¢f. (16.15))
1 Nimin
! !
(16.22) = s S a"R0,)Q,
min le
with the angles
21y
16.23 0, = ——.
( ) J len

Here Ny, is given by (16.19), R(6) denotes the Lie operator in (15.4) whose matrix repre-

sentation on the dynamical variables ¢ and p is given by (15.3), and le) is given by (15.1).
U]

To obtain the jolt strengths a;”, we use (11.11) written for n = 1

l - s
(16.24) al! =3 D) .0s.

s

Here the sensitivity vector 0" has elements o} given by (16.3), and the Gram matrix I'(/) has
elements I'(l),s given by (16.5) with w; = 1/Nyn. In both (16.3) and (16.5) ¢; = cos6; and
sj = sinf; with ; as in (16.23). As described at the end of §16.1.5, however, we do have the
freedom to increment all of the angles §; by an arbitrary amount ¢ (independent of 7).

16.2. Two Degrees of Freedom

Before we tackle the question of how to implement an optimal jolt decomposition in two
degrees of freedom, let us review how we addressed the matter in the last section when we
studied one degree of freedom. There our approach really comprised three steps:

(1) Determine what set of functions appears inside the integral that defines the elements
of the Gram matrix I'(l) in the continuum limit—and do this for all degrees [ up
through the maximum degree of interest, I, = P.

(2) Replace the integral in the Gram matrix elements with a minimal quadrature (cuba-
ture) formula that works exactly for all members of the set of functions determined
in the first step.

(3) Translate the chosen cubature formula into a corresponding formula for performing
jolt decomposition.

We can tackle the case of two degrees of freedom using this same sequence of steps. At first
we shall do so using just the coset space U = SU(2)/SO(2) as the manifold from which to
choose our linear symplectic transformations £; = L(uj). Later we shall look at using instead
two other spaces: U = U(1) @ SU(2)/SO(2) (which covers U(2)/SO(2)) and U = [U(1)]* =
U(l) ® UQ1).

16.2.1. The Functions Inside the Gram Matrix Elements. To determine which functions ap-
pear inside the integral that defines the Gram matrix elements for the case U = SU(2)/SO(2),
let us examine the expression (15.62). In particular, let us remove the integral over SU(2) and
thus examine matrix elements of the partial Gram operator (14.5b) (¢f. (16.9)) with respect
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to the dynamical basis polynomials ¢(j, m; 1, 1) constructed in §15.2.3:
(16.25)  T(u, 1) jmppjrm = [([Dj (W] D7 (ufl)m/,,,) x

vv!
l—l—il % <90(j7 v, ,U*)v I(gl)><Ql(cl)7 Sp(jla VI; l N/)>] .

To determine from this expression the functions of interest to us, we need to extract the u de-
pendence of these matrix elements; hence we examine the product [Dj (u_l)] :w D’ (U™ ) .
The matrices D’ (u) were described earlier as spin-j representations of SU(2). Let us make
this statement more explicit so that we may take advantage of some results well known in
the quantum mechanical theory of angular momentum.

To obtain an explicit formula for the matrix elements D7 (),,m/, use (15.49) together with
the orthonormality of the ¢(j,m;[, 1). Substituting the symbol D7 for @{# (pursuant to our
discussion at the end of §15.2.3), we find

(16.26) D (W) = (p(G,m's 1, 1), L(w)p(§, m; 1, ) -

The reader may notice that the relative order of the indices m and m’ on the two sides of
this expression differs from the usual ordering. The choice made here takes into account the
property (13.15), or (9.15), of Lie operators and ensures that the matrices D7(u) do indeed
form a representation of SU(2); i.e.,

Dj (ul)Dj (u2) = Dj (ulug).

Now recall that we want to use the alternate Euler angle parameterization (15.26) for
matrices u € SU(2); hence, with (13.15), we shall write

L(u) = L{upugus) = L(ug)L(ug)L(uy) = L{eV2/2)L(e™07/2)L(e"72/2).

Using the Lie operators (15.34), one can write the above operator product as a sequence of
Lie transformations:

(1627) E(u) — 6_i¢:a3:ei0:al:e_iw:a3:,
To see this, first note, using (15.22) and (13.11), that the linear Lie operator

Clug) = L) = £( 0 20 )

has the matrix representation

TS

—sin(¢/2) cos(¢/2 0 0

(16.28) M(ugy) = 0 0 cos(¢/2) sin(¢/2)
0 0 —sin(¢/2) cos(¢/2)

with respect to the ¢’s and p’s. Now consider the Lie transformation e~9:a” One can see
from (15.41) that :2a3:2, and hence also all even powers of :2a:, acts as an identity operator
on the ¢’s and p’s. We may therefore write

e—i¢103?2 - exp(—% ;2@3;)2 = cos(%)z — isin(g) 2a°: 2.

Using (15.41) and (16.28), we find

q q 72 «
e—iga® [ 92 ] _ | 92 cos(?) + o sin(?) =M(u @
D1 p1 2 p2 2 (o) P

D2 b2 - D2
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It follows thus that

(1629) E(U¢) _ E(ei¢0'2/2) _ 6_7;0521133'
Also, of course,
(16.30) L(uy) = E(eiw02/2) — i’

Except for some minor alterations, an identical argument applies to £(ug): The linear Lie
operator

L(ug) = L(e™"7/%) = L (CXP(BM/Q) exp((i)G/?))

has the matrix representation

cos(0/2) 0 —sin(6/2) 0
0 cos(6/2) 0 in(6/2)

(16.31) M) = | Gur) 0 cos(9/2) 0
0 —sin(6/2) 0 cos(0/2)

with respect to the ¢’s and p’s. And since :2a': acts as an identity operator on the ¢’s and
p’s (see (15.41)), we may write the action of the Lie transformation ¢

0.1, 0 0 0
il — exp(% :2alz)z = COS(E)Z +isin(§) 2at: 2.

Using (15.41) and (16.31), we find

in the form

q1 q1 —P1 q1
i0:at: q2 _ q2 (Q) P2 . (Q) _ M q2
e ” n cos 3 + 0 sin 5 (’LL@) n
D2 b2 —q2 b2
Hence
(1632) L(’U,g) — £(€*i903/2) — eiG:al:'

The result (16.27) follows from (16.29), (16.30), and (16.32).
With the expression (16.27) for the linear symplectic transformations £(u) we may now
write the matrix elements (16.26) of D7 (u) in the form

(16.33a) DI (u($),0,0)),,,., = (p(,m'; 1, ), e e e = s )

Since these matrlx elements are determined solely by the commutation relations among the
Lie operators :a*: [20, p. 441], and since we arranged the commutation relations (15.35) to
agree precisely w1th those of the quantum mechanical angular momentum operators Ji, we
reach the delightful conclusion that the matrix elements (16.33a) are ezactly those found in
any reasonably complete text on quantum mechanics [7, 64, 75, 77]:

).

(16.33b) D (u(,0,9)),,,, = (m’[e 07

Recall, for example, that we defined the basis polynomials (5, m; [, 1) to have :a®: eigenvalue

m; we therefore obtain from (16.33a) and the unitarity of the Lie transformations gioia™ g
familiar result:

—imap

D (u(y,8,9)), = (e (G, m'; 1, p),e e(g,m; 1, )

i(m’ . i0:a’:
(16.33¢) = e MM (o5, m 1 ), € (i, mi L, )
— o—im/+my) pyj (1 )

Note that in terms of the SU(2)/SO(2) coset space ¢(8, ¢)—see (15.26) and (15.27)—we may
rewrite this expression in the form

(1633(1) Dj (u(wv 97 ¢))mm/ = e_imej (0(97 (b))mm/ °
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We should, however, address the fact that the (nearly universal) convention in quantum
mechanics writes the matrix elements of the rotation operator in the form

(16.34) DéM(gf), 0,0)mim = <jm/|efi¢Jzefl9 Ty > — e*i(m’qurmw)d{n/m(@),

where the (real) matrix elements dfn,m(ﬁ) are given by Wigner’s formula (15.94). Note that
here—as flagged by the subscript “QM”—the indices m’ and m occur in the usual order, and
the rotation operator in the middle effects rotations about the y-axis. To express (16.33b) in
this form, we use the fact that (cf. (15.25))

(0T — o—i(m/2) Tz i8]y yi(7/2) ]
With this substitution we obtain the desired result for the matrix elements (16.33b):
DI (u(e), 8, 8)), = (! [e= 7= =R /210s =00y (/20 =i
(1635) _ —i(7‘r/2)m’ i(ﬂ'/2)m <jml‘e—i¢Jze—i9Jye—inz
=i"" m DéN{(¢7 0, 1/))m/m-

Now that we have in hand the connection (16.35) between our spin-j representations D’
and the conventional representations DQM, we can proceed with extracting from the Gram
matrix elements (16.25) the functions of interest to us. First recall that one can expand the
product of two spin-j representations in a linear combination of other spin-j representations
using the Clebsch-Gordan series [T, T5],

(16.36)  DZ,(6,0,9)m1m, D22, (6,0, w)m2m2 =

jm)

jm)

Ji+j2 Ji g . Jrj j
1 J2 1 J2
S % (sl (] st s
J=lii—g2| m’;m=—j
(Here, as in (15.59), the symbols (7} 72 |7 ) denote the usual Clebsch-Gordan coefficients.)

By making use of the unitarity of the representations D7, the relations (16.34) and (16.35),
the symmetry relation (15.117a) for the elements d’ , (6), and the Clebsch-Gordan series
(16.36), we may (after some algebra) write

(DI )], DY (s = iDL (0,0 DI (6,0, 8) s o
11 c

I
Inserting this expression into (16.25) and collecting into a single coefficient the sums over v,

/. and k (together with anything else that doesn’t look like D" (1), ), we find that the
partial Gram matrix elements have the general form

, , : -/ i1 ” 7 -1/
= ) mm) § § (J j JH> i = DI )y

m —m’ v

3" v’m’

i+’
(1637) I‘(u, l)jmlhj’m'ul = Z Z af,,,m,,DjN(u),jumu.

j//:‘j*j/‘ v!''m!

Here the coefficients af;l/l/m// depend on not only the summation variables j”, v”, and m”, but
also the degree | and the matrix element labels jmu and j'm’y’. For the current discussion,
however, we need not make explicit these latter dependences.

Recall now Theorem 13.1, which states that the partial Gram operator f(u, [) is a class
function with respect to the O(n) subgroup of U(n). This theorem implies that our partial
Gram matrix elements (16.37) must satisfy the relation

(16.38) ['(u, l)jmu,j’m’u’ =I(r-c l)jmu,j’m’u’ =TI(c, Z)jm#-,j’m’#”
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where here u € SU(2), r € SO(2), and c¢ labels the coset space SU(2)/SO(2). To see the
consequences of this relation, suppose f is any function defined on SU(2). Then, by the
completeness of the D7(u) [7, 8], f has an expansion of the form

flu) = Z a{nm’Dj (W)mm-
gmm/’
Using (16.35) and the orthogonality condition for the D7 (u),* we may extract the expansion
coefficients a’, . in the form

W = @5+ 1) [ du () DI (@)

SU(2)
Next assume that f satisfies the class relation
fu) = f(c).

With this assumption we can use (16.33d) and the measure du described in §15.2.2 to carry
out the SO(2) part of the above integration. Writing cq for ¢(6, ¢), we find

4T
; ) aQ [d i 1 N . dQ . N
G =2+ 1) [T [ 2 He)e™ D () = 8o + 1) [ T Fen) D (e
4 4 47
S2 0 S2
In other words, the expansion coefficients afnm, vanish unless m = 0. As a consequence, we
can always write

Flw) = 3 a3 D (o

for any class function f(u). Observe here that the subscript zero on the D7 (u) implies that
only integer values of j can occur in this summation. To simplify further our expansion for
f, let us recall that [7]

47 N
5 Ym(.0)"

where the symbol Y, denotes a spherical harmonic. Using this fact and (16.35), we can now
see that any class function f(u)—and hence also our partial Gram matrix elements (16.37),
or (16.25)—must have an expansion in terms of spherical harmonics:

Flu) = 3 B (6.0)

(1639) Déw{(¢767w)m0 =

(with j taking integer values only).
With the results of the last paragraph one may now write the partial Gram matrix elements
(16.37) in the form?®

i+’
(16.40) L, ) jrmpe o = (e, Dmpgrmpe =Y D 0 Vi ().
i'=li=i'| ™"
j'ez

Since the basis polynomials ¢(j,m;(, u) for a given [ have j < % (recall the first observation
made following (15.49)), and since the upper limit on the sum here equals j + j/, it follows
from (16.25) that all the Yj,,’s appearing in (16.40) must have j < [. We therefore conclude
that when we choose the linear symplectic transformations L(u) from the coset space U =

34Using the connection (16.35), one may show by a simple substitution that the orthogonality condition
for spin-j representations of SU(2) takes the same form whether expressed in terms of the DJ or the DZ)M.
35Here Z denotes the set of all integers.
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U(2)/S0(2), the functions of interest to us are the spherical harmonics Yjm for all j <
lmax =P.

At this point the reader may object that our identification of the spherical harmonics Y},
as the functions of interest depends on our constructing matrix elements of the partial Gram
operator f(u,l) with respect to the particular basis polynomials ¢(j,m;l, ). To see that
this choice of basis does not, in fact, make a difference, simply expand the chosen basis—the
monomials G, say—in terms of the ¢(j,m;l, p). (Cf. the discussion leading to (12.5).)
Since the coefficients in the expansions will not interfere with the required integration over
S? (see the next section), it follows that one’s choice of basis cannot affect the identification
of the functions of interest.

Let us now determine the functions of interest when we choose the linear symplectic trans-
formations £(u) from the coset space U = U(1) ® SU(2)/SO(2) (which covers U(2)/SO(2)).
In this case, using (15.77), the partial Gram operator takes the form (¢f. (15.78))

5 i R~ 0 i f
D) = Fe™.0 = 5 3 Rl QN £() R()',

where (15.80) defines the Lie operator R(w), w € [0, 2], and v € SU(2). If we form matrix
elements of this operator with respect to the basis polynomials ¢(j, m; 1, 1), use the fact that
R(w) and L(v) commute (recall the remarks made following (15.80)), and employ the same
reasoning that led from (15.61) to (15.62), we obtain

(16.41)  T(ve™/2 1) st = Z{([Dj(vl)}:w D7 (0™ Y ) x

1274

—1 l l .

I+1 Z< Gyvids ), R(W)QEC)XR(W)QIE)’%D(J'ﬂ/;l,u')>],
k

which differs in essence from (16.25) only in the presence of the rotation operator R (w) acting

on the Q,(cl)’s. Note that we may, according to Theorem 13.1, factor the SO(2) subgroup out
of the above matrix elements, just as in (16.38). In other words,

(16.42) F(Wiw/2v Djmp.grmw = T(ca /2, D) jmp.grme s

where, as in (16.40), cq labels the coset space SU(2)/SO(2). Because of the class relation
(16.42), and because the matrix elements (16.41) are separable in the U(1) and SU(2)/SO(2)
subspaces,®® one can use arguments identical to those employed earlier; we deduce that the
spin-j representations D’ and D7 appearing in (16.41) lead to the presence of spherical
harmonics Yj,, for j < P—exactly as in (16.40) for the case U = SU(2)/S0(2).

Now examine the dependence of the partial Gram matrix elements (16.41) on the U(1)
subspace—i.e., on the variable w. To do this, first note that we can write R(w) as given by
(15.80) in the form

R(w) = Ry (/2)Ry(w/2),
where the rotation operator R ;, given by (15.135b), effects rotations only in the (g;, p;) plane.

Second, use (15.18) and (15.141) to express Q,(cl) as a linear combination of the eigenfunctions
of R(w):

-k _k /2 1—k
W_ 4 l) i (l—’f)() By, ()
o =it () Z ey (L) ()
k k
= Zak’l"l’l"zwl’f‘l )wéri7
T17T2

36A more precise statement here should say that each matrix element (16.41) comprises a linear combina-
tion of terms—each of which is separable in the subspaces U(1) and SU(2)/SO(2).
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where the symbol a,(jT)m

(15.139), we find that

denotes a set of complex coefficients. Using this expansion and

l -k k
QY =3 al) | Ri(w/2)Ry(w/2)ul, Pyl

T17T2
_ E —z(l k— 27‘1)w/2 —i(k—2r2)w/2, (1=
ak’l"l’l"z Q/J 1rq w?rg
T2
E —z(l 2(r14r2))w/2,,, (1=
- a‘krlrg 1/} 1ry 1Z)27"2
™12

Observe that in this double sum the total r; +r2 ranges over the set {0,1,...,1}. Next, insert

the above expansion into both places where ’R(w)Qg) appears in the matrix elements (16.41).
One obtains

(e 1) jrmpn g = Y {([Dj(vl)];y D’ (”71)’”'”/) X

vy’

l+ i Z Z Z( i(1-2( r1+T2))aJ/2al(€l£1T2 e'(l—2(ri+r2))w/2al(€l)l X

k rirerir

<<p(j,V;l,u),w§ifk)¢§2>< « szrf,so(y v7l,u)>)]

Since r1 +712 € {0,1,...,1}, and similarly for r{ +r}, it follows that the exponential functions
e we{l,l-1,...,—1},

govern the w-dependence of the partial Gram matrix elements (16.41).

Putting together the results of the last two paragraphs, we conclude that when we choose
the linear symplectic transformations L(u) from the space W = U(1) ® SU(2)/SO(2), the
functions of interest to us are the product functions €Y, (Q) for all j < lyar = P and all
ke{P,P-1,...,—P}.

We turn now to the last manifold from which we shall consider selecting the linear sym-
plectic transformations £(u): the space U = U(1) ® U(1), which was discussed in §15.4. To
determine the functions of interest in this case, we first obtain the partial Gram matrix ele-
ments from the Gram matrix elements (15.140) by removing the integrals over §; and setting
n = 2. Thus

1

T (01,02, = 727 D (R(61,02) "0, Q)@Y R (61,62)0))
k

Using (15.138) and the homogeneity relation l; + ls = [, we may write the rotation operator

O]

eigenfunctions 1, in the form

(1 (I—v)
(1643) 1/J§l ¢1 1)¢2 wlrl w2r2 - w’/rl"?’

where the indices v € {0,...,l}, 7 €{0,...,l—v},and ry € {0,..., v} constitute an alternate
scheme for labeling these functions. From the unitarity of the rotation operator (cf. (15.81))
and the eigenvalue equation (15.139) we find that

(91792) 1/}1/7“17"2 — i(l—v—2r1)0; z(u 2r3) sz

vrire”



§16.2 CREMONA APPROXIMATION OF TRANSFER MAPS 143

Employing this result together with the alternate labeling scheme, we can put the partial
Gram matrix elements in the form

F(917 92; l)urlr2 virirh

l : Zefz(l v—2r )916 i(v— 27"2)026 i(l—v'—2r])6, ei(u’72ré)02
+
(16.44)
<w1(/lr)1r27 l(cl)>< I(cl) ’ wl(/l/)r’r/ >
1
= —+ ; el(’j v +2(T1_7‘1))916_1(V v'=2(ry—75))0, <wVT1T27QI(cl)>< 1/11(/7"7" > )

Next consider the k-th term in this summation and observe from (15.18) that Q,(Cl) is of degree
I — k in the variable ¢; and of degree k in the variable ¢;. Likewise, observe from (16.43)

and (15.138a) that the eigenfunction 1/11(}2”2 is of degree [ — v in the variables z; and z7, and

of degree v in the variables z3 and z3; hence, from (15.97), 1/1,(}2”2 is of degree | — v in the
variables ¢; and p;, and of degree v in the variables g2 and ps. It follows from these two
observations that the inner product <1/}Vr1r2, k)> must vanish whenever k # v.3” With a
similar result for the inner product <Q P I(Jl’)’r‘, " > we see that together the two inner products
appearing in (16.44) contribute a factor 5kyc§kl,/ = g0, to each term in the summation.
We may therefore express the partial Gram matrix elements in the form

6’11” i2(ry —1} i2(ry—1)
(16.45)  T(01,02, D)y r, ey, = e 2(ry =71)01 i2(ro—15)0s <¢W1T27Q,(,”><fo)=¢£lr);r;>'

Since ry,r; € {0,...,1 — v}, it follows that r; — ] € {{ —v,...,—(l — v)}; likewise, 7y —
ry € {v,...,—v}. Because v € {0,...,l} and | < ly4 < P, we might conclude that
the functions of interest to us are product exponentials of the form e?2¥101¢12k202 for all
ki,ke € {P,P —1,...,—P}. We can, however, place somewhat stronger constraints on ki
and ky. To see this, suppose k; is given. Then because |k1| = |ry — 1| <[ —v, it follows that

kol = ry =yl < v <11kl

or, put another way,
|Ei| + ko] < L
We therefore conclude that when we choose the linear symplectic transformations L(u) from

the space U = U(1) @ U(1), the functions of interest to us are the product erponentials
e2k1016i2k202 for qll ky ke € {P,P —1,...,—P} such that |ki| + |k2| < P.

16.2.2. Clubature Formulas for the Two-Sphere. Let us now address the second of the three
steps outlined at the beginning of §16.2: that of replacing the integral in the Gram matrix
elements with an appropriate cubature formula. Recall from (15.29) that when we choose the
linear symplectic transformations £(u) from the coset space U = SU(2)/SO(2), the required
integral covers S?, the surface of the unit two-sphere. Based on the results of the last sec-
tion, we now seek minimal cubature formulas on S? that yield exact results for all spherical
harmonics Y}, having j < P. In other words, we want to find cubature formulas of the form

N

(16.46) An[f()] = Zwif(ﬂ )
i=1

with N as small as possible, such that for all j < P

(16.47) Qn [Yjm(Q)] = 0;00mo

T

3TWe employed the same sort of reasoning earlier, in symbols, for the argument that led from (15.140) to
(15.142).
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Before listing the best of the known cubature formulas for the two-sphere, we describe a
simple counting argument that provides a means for estimating how close a given formula is
to being minimal. First observe that (16.47) constitutes a set of

P

> @j+1)=(P+1)

j=0
conditions that the cubature formula (16.46) must satisfy. Next note that one may specify N
weights and IV points so as to satisfy these constraints. The symmetry of the sphere, however,
means that one point may always be fixed at, say, the “North pole”, and a second point may
be rotated about the polar axis to the “prime meridian”. Thus, one point may be placed at the
North pole, and a second may be placed on the prime meridian—with only its latitude requir-
ing specification, and the other N — 2 points remain free. Since two angles define each point,
the total number of free variables equals N weights + 2(N — 2) variables for the free points +
1 latitude for the point on the prime meridian = 3N — 3. This suggests (but does not prove)
that the number of points N in the cubature formula (16.46) must, for our needs, satisfy

3N —3>(P+1)%

or

(16.48) N > Ny (P) = {%w _ {ww bl

where [z] denotes the ceiling function described earlier, after (16.19). We may thus use the
number N, (P) as a rough guide for judging whether or not a given cubature formula is
close to minimal.®®

Table 16.1 lists the best (in the sense of requiring as few points as possible) of the known
cubature formulas on the spherical surface S? for seven different values of P between three
and fourteen inclusive. All of these formulas were taken from Stroud [85], published in 1971.
Although other cubature formulas for the two-sphere have been published more recently
[5, 24, 46, 57, 56, 58, 60, 59, 61, 78], none use as few points as those compiled in Stroud’s
book.?”

Each cubature formula listed in Table 16.1 begins by stating the degree P (sometimes also
called the order or the strength) and the number of cubature points N. For some values of
P the listing also includes a brief description of the geometric nature of the set of points.
Then, each triplet of the form (x,y, z) labels a point—or a set of points—on S? in standard
Fuclidean coordinates; the W, or W, next to a given triplet denotes the corresponding
weight for that point, or set of points. The subscript “FS” on some triplets stands for “fully
symmetric” and indicates that one should include all possible distinct permutations of the
three codrdinates x, y, and z together with all possible distinct choices of ‘+’” and ‘—’ signs on
the three coordinates. The triplet (s, s,0)rs thus represents a total of twelve distinct points:
three permutations times four choices of signs. In addition, one should treat as independent
the ‘+’ signs that appear in some of the points. The triplet (£r, s, 0) thus represents a total
of four distinct points.

The reader will note that most of the cubature formulas given in Table 16.1 are for odd
values of P. This fact simply reflects the underlying symmetry of the set of cubature points in
relation to the symmetry of the spherical harmonics. Recall that if r and —r denote antipodal

38The estimate (16.48) is closely related to the concept of efficiency for cubature formulas; see [63] for a
description. The true minimum number of cubature points might, by luck, be smaller than Ny (P), or it may,
in fact, be larger. The latter case may be required in order to ensure real—rather than complex—solutions
for the weights and points determined by (16.46) and (16.47).

39This may seem surprising, but most of the research on cubature formulas for S2 appears to have concen-
trated on formulas that obey certain restrictions. The so-called spherical t-designs, for example, have equal
weights for all points, a constraint that seems to conflict with our desire to have as few cubature points as
possible for a given degree P.
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points on the two-sphere, then Yj,(—r) = (—1)7Yj,,(r). Now consider a cubature formula
which uses a set of points on S? which has the property that for any given point in the set,
its antipodal point also belongs to the set. (In other words, the set of points is invariant
under inversion through the origin.) If the given cubature formula assigns equal weights to
antipodal pairs of points, then it follows from the symmetry of the spherical harmonics that
that cubature formula will work exactly for all Y}, for which j is odd.

Table 16.1: Some cubature formulas for S?, the two-dimensional
surface of a three-dimensional sphere. This table lists for each
P € {3,5,7,8,9,11,14} a set of points and weights such that the
cubature formula (16.46) yields exact results for all spherical har-
monics Y}, having j < P.

P=3 N=6
These points are the vertices of a regular octahedron.
(r,0,0)ps VI{
r=1 W = 5
P=5 N=12
These points are the vertices of a regular icosahedron.
(£r, £s,0) %%
(0, £r, £s) %1%
(£s,0,+r) w
r2:5+\/5 82:5_\/5 VV:i
10 10 12
P=7 N=24
These points are invariant under any rotation that maps a cube onto
itself.
(us, vi, w;) w
(ui, —V;, —wi) W
(ws, wi, —v;) %%
(us, —w;, v;) VV1
ie{l,...,6} W:ﬂ
(ug,v1,wy) = (r,8,1) (ug,vq,wyq) = (—38,7,1)
(ug,va,we) = (—r,t,s) (us, vs,ws) = (t,1,5)
(us,v3,wsz) = (s,t,r) (ug,ve, wg) = (—t,8,7)
Here r, s, and t denote the positive roots of the equation
1 1
z6—z4+gz2—m20,
and have the approximate values
r = 0.86624 68181 07821,
s = 0.42251 8653761111,
t = 0.26663 54015 16705.
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Cubature Formulas for S? (ctd.)

P=8 N=30
(1,0,0)ps Wi
(wi, v5,w;) Wy
(ui, —v5, —w;) Wy
(ui,wi, —’Ul) W2
(ui, —w;, v;) 6 Ws )
1 1
ZE{I,...,G} Wl:@ Wgzm

The 24 points with weight W5 are determined as in the P = 7 formula—
except that here r, s, and ¢ denote the positive roots of the equation

6 5, 5

Lot g =0

and have the approximate values
r = 0.81841 30426 59383,
s =0.51646 92453 06672,
t = 0.25191 19097 17204.

P=9 N =32

The twelve points with weight W; are the vertices of a regular icosahe-
dron; and the twenty points with weight W5 are the vertices of a regular
dodecahedron (the dual of the icosahedron).

(£r,£s,0) Wi
(0, £r, £s) %%
(£s,0,+7) %%
(£u, +v,0) Wy
(0, £u, +v) Wy
(£v,0,+u) Wo
(£t, £t, £t) Wa
PERERL 82:5—\/5 W, = 2
10 10 840
PIE L R & VG I | W, = 20
6 6 3 840
P =11, N =50
(7‘, 0, O)FS W1
(s,5,0)ps Wy
(t,+t, +t) Ws
(u,u,v)ps Wy
r= 52:1 t2—l u2:i ==
2 3 11 1
9216 16384 15309 14641
17 725760 2~ 725760 3= 75760 T 725760




§16.2 CREMONA APPROXIMATION OF TRANSFER MAPS

Cubature Formulas for S? (ctd.)

10

and define z = /yx. Then

—23+ 24
= 2s

—Z25 + 22
42 = 2s

—Z9 + Z6
Us = 2s

—2z26 + 23
va= 2s

—2z4 + 25
Us = 2s

ie{l,...,5}

s, 5—15 s 5+/5
T s° =

V2

U3

V4

Us

z5 + Z6
2s
26 + 24
2s
z3 + 25
2s
24 + 29
2s
29 + 23
2s

Wy
Wy
Wy
Wa
Ws
Wa
Wo
Wy
Wa
Ws
Wa
Wo
Wy
Wo
Ws

125

10080

Let yx, k € {1,...,6}, denote the roots of the equation
0 = 2556125y°—5112250y° 4 3578575y

—1043900y> + 115115y> — 3562y + 9,

w3 =
Wy =

Wy =

143
=

~ 10080

21+ 29
2s
Z1 —|— z3
2s
21+ 24
2s
21+ z5
2s
21+ z6
2s

147

Table 16.2 lists the values of Ny, (P) as given by (16.48), our rough estimate of Ny, for
P e {3,...,14}. It compares these values with the lower bounds N(P,2) from Table 13.1 as
well as with the number Ny of cubature points required by the formulas listed in Table 16.1.
The dashes in the column for Ny indicate that no solution to (16.46) and (16.47) is known
that uses fewer points than the next entry in the table. In these cases we conjecture that the
solution lies on the complexified two-sphere.

The nearness of corresponding values for Ny, (P) and Ny given in Table 16.2 suggests
that the cubature formulas given in Table 16.1 work quite well and that they may, in fact,

be minimal [63]. Indeed, four of the formulas have Ny < Ngpp(P)—

i.e., they appear to work

better than we have any right to expect! These exceptional formulas are marked in Table 16.2

with an asterisk on the value of Ng.
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TABLE 16.2. A comparison between the rough estimate Ngpp,(P) for Nyip
(see (16.48)), the lower bound N(P,2) from Table 13.1, and the number of
cubature points N used by the formulas described in Table 16.1.

P N,»(P) N(P2) N,
3 7 5 6*
4 10 7 -
5 13 10 12
6 18 12 -
7 23 15 24
8 28 19 30
9 35 22 32"
10 42 26 -
11 49 31 50
12 58 3B -
13 67 0 -
14 76 46 72"

16.2.3. Cubature Formulas for the Manifold of U(1) ® SU(2)/SO(2): a Circle crossed with a
Two-Sphere. Recall from (15.78) and the results of §15.2.2 that when we choose the linear
symplectic transformations £(u) from the space U = U(1) ® SU(2)/SO(2), the required
integral covers separately the circle S! and the two-sphere S?—i.e., the integral covers S* @S2,
Also recall from page 142, near the end of §16.2.1, that in this case the functions of interest
to us are the product functions e**Y},, () with j < P and x € {P,P —1,...,—P}. We
therefore seek minimal cubature formulas on the manifold S' ® S? that yield exact results for
all of these functions. In other words, we want to find cubature formulas of the form

N
(16.49) ON[f(w, Q)] = wif(wi, Q)

i=1
with N as small as possible, such that for all j < P and all x € {P,...,—P}

Var

The simplest solution to the problem just posed in the last paragraph uses a so-called
product cubature formula—essentially a Cartesian product of two or more quadrature or
cubature formulas. Suppose, for example, that

N,
Q. [f (@) =D aif (@)
and
Ny
Qn,l9(y)] = Z big(y;)

are two quadrature formulas that give exact results for respectively functions f in a set F
over a domain Dy, and functions g in a set § over a domain Dg. Then

(16.51) QNN [h(z,y)] = Zaiba‘h(ﬂ?uya‘)

is a product cubature formula that gives exact results on the domain D5®Dg for any function
h(z,y) that can be separated into the form f(x)g(y), where f € F and g € G [85].
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Because there exist many good quadrature formulas, product cubature formulas have the
great virtue of being easy to construct. Their principal drawback is that the number of points
required equals the product of the number of points required by their component quadrature
formulas. To gain a useful perspective on why this happens, suppose JF is the set of all poly-
nomials in z of degree at most d, while, similarly, G is the set of all polynomials in y of degree
at most d. And further suppose that we have an appropriate N-point quadrature formula
that gives exact results on both sets F and §. Then the corresponding product cubature
formula (16.51), which will require N2 points, will yield exact results for all polynomials in
F ® G. This space includes not only all polynomials in z and y of degree at most d, but
also some such polynomials of degree larger than d (e.g., x%y?). In essence, to purchase these
additional polynomials, we must pay the price of N2 cubature points. If we do not want these
expensive (i.e., higher-order) polynomials, we may shop around for less costly non-product
cubature formulas.

For a cubature formula in the present case—functions of the form e*“Y},,(Q) over the
domain S! ® S>—we can use a product of the quadrature formula (16.18) given in §16.1.6 for
the circle with an appropriate cubature formula from Table 16.1 for the two-sphere. In other
words, we may use the formula

Ne—1 N,

w;

(16.52) Qu.n [f(w, Q)] = Y N (Wi, ),
j=0 i=1"°¢
where w; = 2Nicj, N, denotes the number of points on the circle, and N denotes the number

of points on the sphere. Since the integral over the circle S' should give exact results for the
exponential functions e with k € {P,..., —P}, we can use essentially the same argument
as given in §16.1.6 (simply replace 2k by x everywhere) to conclude that we must set N. > P.
Hence we choose

(16.53) N,=P+1.

Table 16.3 lists the number of points required by the product cubature formula (16.52) when
N, is given by (16.53) and Ny is given by the appropriate value in Table 16.2.

TABLE 16.3. The number of points N.Ny required by the product cubature
formula (16.52) on the manifold S! ® S?. This table lists N.N;, for those
values of P for which cubature formulas were given in Table 16.1 for the
two-sphere S2.

P N.N;
3 24
) 72
7 192
8§ 270
9 320
11 600
14 1080

Although we can certainly use the product cubature formula just described to construct
corresponding jolt decompositions, we would prefer to have cubature formulas that use fewer
than the (uncomfortably large) number of points N.N; listed in Table 16.3. As the reader
has probably observed, there is a correlation between, on the one hand, the maximum degree
P of the polynomials to which we wish to apply jolt decomposition and, on the other hand,
the strength required of our cubature formulas. In the light of this observation, we may make
the following
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Conjecture 16.1. The functions of interest to us when we choose the linear symplectic
transformations L(u) from the space U = U(1) @ SU(2)/SO(2) are the product functions
e Y (Q) for all j <y = P and all K € {P —j,...,—(P —j)}.

If this conjecture holds, then it should be possible to construct non-product cubature formulas
that use fewer than N.N; points and yet still yield exact results for all the functions of interest
to us on the manifold S ® S2.

16.2.4. Cubature Formulas for the Manifold of U(l) ® U(1): a Two-Torus. Recall from
(15.140) that when we choose the linear symplectic transformations £(u) from the space
U = U(1) ® U(1), the required integral covers two separate circles S'. In other words, the
integral in this case covers the two-torus T2 = S' ® S'. Also recall, from the end of §16.2.1,
that the functions of interest to us here are the product exponentials e?2#191¢i2k202 <yith
ki,ky € {P,P —1,...,—P} such that |k1| + |k2| < P. To simplify later discussion, we shall
use the symbol Xp to denote the set of all such pairs (k1, ko) for a given value of P. Thus
we define

(16.54) Kp = {(k1,k2) | k1,ke € {P,P—1,...,—P} and |ki|+ |ko| < P}.
For convenience, let us also define K5 as the set Kp with the pair (0,0) removed: thus
(16.55) P =%Xp—{(0,0)}.

We now want to find minimal cubature formulas that yield exact results on the manifold T?
for all of our product exponentials e?2¥101¢i2k202: hence we seek cubature formulas of the form

N
(16.56) QN[f(01,00)] = Zwif(eliﬁzi),
i—1

with N as small as possible, such that
(16.57) Qn [e?F101e2R202] = Gop,, Bo,

for all pairs (k1, k2) € Kp.

For the functions of interest to us on T2, we could use two copies of the quadrature rule
(16.18) to build a product cubature formula of the form (16.51). Such a formula, however,
would require (see (16.19))

(16.58) Nproa = (2[P/2] +1)?

points. We can develop a more efficient cubature formula by using what are called lattice

rules [81]. For our purposes, such a rule has the structure?’
| Nl ‘ ‘
(16.59) QnLf (O, 02)] = FO3E, o5,
j=0

where NV and a are a pair of judiciously chosen positive integer constants. To see what
constraints these constants must satisfy, let us apply to this lattice rule a straightforward
generalization of the argument given in §16.1.6: Insert the function e??#11¢i2k2% into the
quadrature formula (16.59) to obtain

1 N-1 1 N-1 )
QN[ei2k191ei2k202} _ = 2 :ei2k127rj/Nei2kgo¢27rj/N _ = } :(ei27r2(k1+ak2)/N)J'
N < N 4
j=0 j=0

400ne may also, of course, choose to attach the coefficient « to the first angle rather than the second; thus

Qnlf(01,02) = — 3 flale, 22).
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For k1 = ko = 0, this sum returns the value 1 and hence agrees with the requirement (16.57).
For the cases k1 and k2 not both zero, the summation yields

1 1— ei27r2(k1 +akz)

i2l€101 i2]€292 — .
QN [e € } TN 1_ e2n2(kitaks)/N’

which, for integer «, will return the correct answer 0 as long as the denominator does not
vanish. This means we must select N and « so as to ensure
2(]{31 + Osz)
N

We may easily identify one constraint on the constant a by making two observations: First,
in order to satisfy (16.60), we cannot allow ki + aks to vanish for any pair (k1,k2) € Kp.
Second, observe that (ki,—1) € X for all k; € {0,1,..., P — 1}. It follows that @ cannot
belong to the set {0,..., P — 1}, and hence

a> P

(16.60) €7 for all pairs (k1, k) € K'p.

Cools and Sloan [19] have found minimal cubature formulas for the broader problem of all
product exponentials e?™1%1e#m2% for which mq,mg € {M,...,—M} and |mq|+ |ma| < M4
They proved that choosing

a=2[M/2]+1

and

e

makes (16.59) a minimal cubature formula for their somewhat broader class of functions. If
we wish to apply these results to our more restricted problem, we must set M = 2P; as a
consequence, we find

a=2[2P/2] +1=2P +1,

N = {MW _2P(P+1)+1.

For all P > 1, the number of cubature points here is greater than or equal to the number
Nprod (see (16.58)) required by our product cubature formula. (Note that one might have
predicted this larger number of points because Cools and Sloan’s cubature formulas work
for many more functions than we require.) On the other hand, it seems reasonable to guess
that the best choice for a lies somewhere in the range defined by our lower bound P and the
value 2P + 1 determined by Cools and Sloan’s results. Let us make this guess our working
hypothesis.

Testing all « € {P,P +1,...,2P + 1} and searching for the smallest N (which we shall
denote Ny2) that satisfies (16.60), we obtain the results listed in Table 16.4. For comparison,
this table also lists the values of Npoq as given by (16.58). A close examination reveals that
the values of N and « obey a definite pattern, and we therefore make the following

Conjecture 16.2. If we choose

(16.61a) a=P+1,
and
(16.61Db) N =Nyp=2 {w—‘ + 1,

4INote carefully that here, in contrast to our more restricted problem, m; and ms may be odd as well as
even.
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TABLE 16.4. This table lists for P € {3,...,14} values for a and N = Ny,
that appear to make (16.59) a minimal cubature formula on the two-torus

T2.
P « Nt2 Nprod
3 4 11 25
4 5 13 25
5 6 21 49
6 7 25 49
7T 8 37 81
8§ 9 41 81
9 10 55 121

10 11 61 121
11 12 79 169
12 13 85 169
13 14 105 225
14 15 113 225

then the lattice rule (16.59) is a minimal cubature formula for the product exponentials
e2k101ei2k202 on T2 for all pairs (k1,ks) € Kp.*?

A somewhat more transparent way to express (16.61b) says that Ny equals the first odd
integer larger than P([P/2] + 1).

16.2.5. Jolt Decomposition in Two Degrees of Freedom. Let us now summarize the process
of jolt decomposition in two degrees of freedom. We begin with a set of homogeneous poly-

nomials,
M(1,4)

m= Y OGY,
r=1
of degree | < P and want to decompose them into a linear combination of jolts. In other
words, we wish to write these polynomials in the form (¢f. (11.2))

1 N M(1,2)
1 1
(16.62) h = N(2) > D> wja;k)[’le(c)’
17 =1 k=1

where here, as described in the introduction to §16.1, we have replaced the factor 1/N by
the weights w;. This replacement has no effect on the logic of the derivation given in §11 for

the jolt strengths ayk). The only essential change occurs in the definition of the inner product
{,}, which is now defined by (cf. (11.3) and (11.5))%?

1
M(l,n) 4

(16.63) {¢n} =

We may therefore compute ayk) exactly as in (11.11):

M(1,4)
l — s
(16.64) ) = 3 DLW ol

r,s=1

42Dy, Ronald Cools has since communicated to me a proof of this conjecture [17].

43Here we are assuming that all the weights w; are positive. This assumption ensures that the introduction
of possibly unequal weights will not radically alter the geometry of the inner product {,}. For example, the
inner product remains positive definite. Note that, in general, numerical analysts consider positive weights a
desirable property for cubature formulas.
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where (see (11.4))
(16.65) o =GV, L;Q),
and (cf. (11.8))

M(1,2)

N
1 ‘A S
(16.66) PUrs = 3777y 2 2 WiTiThe
1) =1 k=1

~

To complete the description, we need only specify the weights w; and the linear symplec-
tic transformations £;. These quantities are based on the cubature formulas described in
§616.2.2-16.2.4, and we treat each possibility in turn.

Examine first the case of using cubature formulas for the two-sphere S?. Recall from Theo-
rem 13.1 and the definition (15.27) that when we choose the linear symplectic transformations
L(u) from the coset space SU(2)/SO(2), we may express them in the form

L(cq) = L(c(@, gb)) = L(ug - ug).
Since L (u) stands for £(M(u)) (see §13.3), we may use (13.12) and our convention (9.12)
for representing linear Lie transformations as matrices to obtain the matrix representation of
E(CQ):
M6, ¢) = M(ug - ug) = M(ug) M (ug),
where M (ug) and M (uy) are given by (16.31) and (16.28), respectively. Carrying out the
matrix multiplication, we obtain the result

CpCa CpSa  —SpCa  —5SpSa
| —cpsa CpCa  —SpSa SpCa
(1667) M(97 ¢) - 5pCq SpSa CpCq CpSa ’
Spsa _Spca —CpSa Cpca
where
(16.68) ¢ = cos(9/2), 0 = co5(9/2),

d

sp=sin(0/2), 0 s, =sin()2).
Here the polar angle 6 and the azimuthal angle ¢ are determined by the points of an appro-
priate cubature formula for the two-sphere S?. Likewise, the weights w;—needed by (16.62)
and (16.66)—are determined by corresponding weights from the same cubature formula.

Since the £;’s in (16.65) act exclusively on g-monomials, we need compute their action
only on the ¢’s. Applying (16.67) to the phase-space variables z, we find

q1 . q1CpCq + q2CpSa — P1SpCa — P2SpSa
16.69 L(c(6, = .

( ) ( ( ¢)) (QQ) <_qlcp5a + (J2CpCa - plSpSa +p2spca)

Next examine the case of using cubature formulas for the manifold S' ® S2. In this case
Theorem 13.1, together with (15.27) and (15.77), allows us to express the relevant linear
symplectic transformations in the form

L (CQ 6iw/2)

(cf. also (16.42)). By the same method as above we find for this linear Lie transformation
the matrix representation

M(6.6.0) = M(e)M(c*/*1) = M(8.6)M(e/?1).
Using (16.67) and (15.79a), and carrying out the matrix multiplication, we find

CaCs SaCs —CaS5  —8aSs
—S84C CqC —S84S CqS

(16.70) M0, ¢,w) = are ae ava R
CaSs SaSs CaCs SaCs

SaSo —CaSo —SaCo CaCo
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where
cs = cos((0 —w)/2), ¢ =cos((0+w)/2),

(16.71) 55 = sin((6 —w)/2), s =sin((0 +w)/2),

and ¢, and s, remain as given in (16.68). Also as before, the angles 6, ¢, and w are determined
by the points of whatever cubature formula we use for the manifold S! ® S?; and likewise for
corresponding weights w;.

In this case, for the manifold S! ® S?, we find that the action of the linear symplectic
transformations £(u) on the ¢’s is given by

' T g25aCs — P1CaSs — P25aSs
16.72 Llcoe@/2) (1) = q1CaCs '
( ) ( ? ) a2 —q15aCo + q2CaCo — P1SaSe + P2CaSo

Now examine the last case—that of using cubature formulas for the two-torus T2. In this
case the linear symplectic transformations come from the space U(1)® U(1) = [U(1)]*. They
have the form given in (15.135) (with n = 2),

R(ela 02) = Rl (91)R2(92)5
and the corresponding matrix representation

M(6:,05) = M( 0 ) .

0 61’92

Using (13.11) and the angles defined in the lattice rule (16.59), we can express this represen-
tation in the specific form

COS(Q_T;;) E) 2 1) Sm(?\%) (02 1)
B 0 cos(ayt 0 sin (a5
(16.73) M(64;,025) = —sin Q_TZ) 0 005(2%) 0 ,
0 —s1n(04]2\%) 0 cos(a?vitz)

where j € {0,1,..., Nt2 — 1}, and Ny2 and « are determined by the appropriate lattice rule.
If one uses values of N;; and « from Table 16.4, then the corresponding weights are constant:
w; = 1/Nt2.

In this last case, for the manifold T?, we find that the action of the linear symplectic
transformations R (615, 62;) on the ¢’s is given by

¢ q1 cos(015) + p1 sin(6‘1j)>
R (015,02, = i
(015, 025) <q2> (q2 cos(f2;) + pa sin(f2;)

( Q1 cos(?vié) +m sin(%i)
) .

(16.74)

n Q2 cos(a?\%) + po sin(a?vitz

16.3. Three Degrees of Freedom

At the beginning of §16.2 we outlined a sequence of three steps leading from the continuous
version of jolt decomposition back to the discrete version. The steps were those followed when
we analyzed the cases of one and two degrees of freedom. In three degrees of freedom the
program remains the same; its execution, however, requires rather more work. In this section
we shall investigate how to construct discrete jolt decompositions in three degrees of freedom
when we choose the linear symplectic transformations £; = £(u;) from either of two possible
manifolds: the coset space U = SU(3)/SO(3) or the space U = [U(1)]? = U(1)® U(1)® U(1).
As we shall see, there exist close analogies with the corresponding manifolds U = SU(2)/S0(2)
and U = [U(1)]? = U(1) ® U(1), and they will serve as very useful guides. Still, for neither
manifold is our knowledge quite as complete as it is in one and two degrees of freedom, and
we shall point out work that remains and possible avenues of approach.
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16.3.1. The Functions Inside the Gram Matrix Elements. To determine the functions that ap-
pear inside the integral that defines the Gram matrix elements for the case U = SU(3)/SO(3),
let us start from (15.120) and apply arguments analogous to those used in §16.2.1. Removing
the integral over SU(3) from (15.120), we write down the partial Gram matrix elements

W67 Tl = gy o (E0 QP Q£ ).

where the wﬂ, as in §15.3.2, denote a set of basis polynomials that transform according to the
irreducible SU(3) representation j = (j1,j2). Here recall that the subscript p labels distinct
basis elements within a representation. In §15.3.2 we let p stand for the trio (1, I3,Y"), which
forms one possible scheme for labeling the basis functions within a representation. This
labeling scheme, however, is not unique, and for the moment we leave it unspecified. (We
shall return to this point later.) Now use (15.119) to expand £(u~")1/, in terms of the unitary
representation D’ (u~1); then (16.75) becomes (cf. (15.62))

(16.76)  T(u, 1)jujrw = [([D%u—l)]; DI (), ) X

7“1)2“2) ;@ <”><Q,§”,wi’,>].

Before simplifying this expression, we take a brief detour to describe the Clebsch-Gordan
series for SU(3).

All the classical Lie groups have Clebsch-Gordan series that express a direct product
of irreducible representations in terms of a direct sum of irreducible representations. The
Clebsch-Gordan series for SU(3) is [30]*4

o . min(j1,55) min(jz,51)
(16.77a) DU @D ~ B @ (G —i gy — kida — ks — i),
1=0 k=0

where ~ denotes equality of representations, and the symbol (s, s';¢,¢') is defined by

min(s,s’) min(t,t")
(16.77b) (s, 8'st,t') = D) g ([ Dlet'=2tt40) g (I pletsthitrt’=2k)
i=0 k=0

This result tells us that we may rewrite the two D’s that appear inside (16.76) in the form
S B
(16.78) [DI(u )]# D) = Zc o DR (W) 4

where the summation over k includes only those representations that appear in the Clebsch-
Gordan series (16.77).

We can now simplify the partial Gram matrix elements using the same argument as led
from (16.25) to (16.37). Applying (16.78) to (16.76), and collecting the sums over v, v/, and
k into a single coefficient, we obtain a result of the form

(1679) F(’U, l g’ = Z ZG’G’T‘DN oT)

a form exactly analogous to that of (16.37). As with that earlier result we have suppressed
the dependence of the coefficients af_ on the matrix element labels ju and j'p’. The principal
difference occurs in the summations: here the sum over « is constrained by the SU(3) Clebsch-
Gordan series (16.77).

44gee also the Mathematica package SU3.m in Appendix H. It contains the function SU3DirectProduct[]
which performs this computation.
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As we did for the two degree of freedom case in §16.2.1, we may further simplify the
partial Gram matrix elements (16.79) by noting that, according to Theorem 13.1, these
matrix elements are class functions with respect to the O(3) subgroup of U(3). Appendix G
shows that one may write any element u € U(3) as a product 7 - ¢ of a real orthogonal
element r € SO(3) and a symmetric element ¢ € U(3). It follows that we may write any
element u € SU(3) in the form

u=r-c
where r € SO(3), and ¢ € SU(3) labels the coset space SU(3)/SO(3). Using this fact together
with the fact that I'(u, 1) is a class function, we may write down the relation

(1680) F(u, Z)j‘u’j/#/ = F(C, l)jﬂ_’j/#/ = F(fu, l)jﬂ_’j/‘u/.
Now observe that because ¢ may be any element in the same coset, this relation must hold
for every r € SO(3). It follows that (16.80) places very strong constraints on the expansion
coefficients af_ in (16.79).

Before we address the implications of the class relation (16.80) on the expansion of the

partial Gram matrix elements (16.79), we take a brief detour to discuss states with angular
momentum zero. Consider the function

(16.81) Xft = /drﬁ(r)d)ft.
SO(3)

This function is left unchanged under the action of any operator L£(r) taken from SO(3). To
see this, simply compute. Using (13.15), we find that

E(r')x{b = /drﬁ(r’)ﬁ(r)wi = /dr E(rr’)wi.
S0O(3) SO(3)

As SO(3) is a compact Lie group, it has a left and right invariant measure, and we may
therefore change the variable of integration to r”” = rr’ with dr” = dr. On doing so, we
obtain the result

(16.82) L), = /dw’c(r”)wﬁ —
SO(3)

which verifies the claim. In the parlance of group theory one says that the function X{L trans-
forms according to an identity representation of SO(3) contained within the representation j
of SU(3). To make the same statement in the language of physics, one says that the state X{L
has total angular momentum zero.

Not all representations of SU(3) carry an identity representation of SO(3)—i.e., contain a
state of total angular momentum J equal to zero. Indeed, it turns out that a representation
(j1,j2) of SU(3) contains a state with angular momentum zero if and only if j; and j are
both even [26]. Moreover, the state with J = 0 is unique (7.e., has multiplicity one) in the
given representation.*® Let us agree to label the (unique) J = 0 state in the representation
(j1, j2) by the symbols

GBI or g,
where, as earlier, we sometimes abbreviate the pair (ji, j2) simply as j. If j; and js are not
both zero, then the SU(3) representation (j1,j2) is carried by a set of dynamical polynomials
which forms a vector space of dimension greater than one. In these cases we may choose an
orthonormal basis for the vector space in an infinite number of ways. In §15.3.1 we made

45Ty understand these relationships better, it may help to consider the corresponding situation in the
more familiar context of the group SU(2). For that group the representation labeled j is carried by a set of
2j + 1 basis functions, and one may label those functions by an index m according to the representations they
carry of the subgroup SO(2) C SU(2). Only functions with m = 0 carry an identity representation of SO(2),
and the only representations of SU(2) that contain such functions are those of integer spin j.
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one such choice based on the possible values of isotopic spin I, its third component I3, and
hypercharge Y. It is also possible—though not as easy—to choose a basis in such a way as
to emphasize the angular momentum [26]. Were we to do so, we could immediately identify
(if it exists) the vector corresponding to J = 0 as one of the basis elements within the given
representation. On the other hand, if we choose our basis as in §15.3.1 or Table 15.8, then in
general we must form a linear combination of basis elements in order to construct a function
having total angular momentum zero.

Based on the observations in the last paragraph and the result (16.82), we may write the
function Xﬂ defined in (16.81) in the form

(16.83) = [dr e = at il

50(3)
where a(j, ) denotes a proportionality constant. (Of course «(j, ) will certainly vanish
whenever j; and j; are not both even.)

Let us now address the implications of the class relation (16.80) on the expansion (16.79)
for the partial Gram matrix elements. We begin by applying an integral over all of SO(3)
to both the left- and right-hand sides of the class relation. Since the left-hand side does not
depend on r, the integration leaves it unchanged. (Here we assume that the measure dr is
appropriately normalized.) Since 7 on the right-hand side of (16.80) may be any element in
S0(3), we denote it simply as r. Thus, using (16.79), we obtain

(16.84) T(w, ) jpujrw = /drI‘(ru Djpjrw = /dr ZZ(LUTD“ ru)

SO(3) SO(3)

Now note that because the D’ (u) s form a representation of SU(3), one may write

(16.85) I (wruz)or ZDJ (w1)o0D? (uz)r-

Inserting this factorization into (16.84), and using the SU(3) analog of (16.26), we find

LDy = [ dr D)) SR ACRE O

so@) "~

=S 0w [dr (05, L0705

K oTUD SO(3)
Using (16.83), we then reduce this result to the form

U, D) jpgrw = ZZamD“ 7 (P, alk, o))

K OTvV

(16.86) =33 @k DR (u)yra(k, 0)d,s0

K OTUvU
K, K K
= E E K, o' UTD 4(0777._ E E b D 4(0777..
K
Before we continue, let us pause to make some remarks about the functions

(16.87) D" (1) egry = (Y, L(w)Plys) .
First observe that they are class functions—as they must be—because

D" (u)sorr = D™(r - ¢)sgr7 = < 5 L(c)L(r) “0”> D"(c)«orr-

(Here we have used (13.15) and (16.82).) Then recall that in two degrees of freedom, see
§16.2.1, the functions D7 (u)o,, that arose during the derivation of (16.40) were just the
well-known spherical harmonics Yj,, (modulo complex conjugation and a proportionality
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constant). Indeed, the Yj,’s have a structure that corresponds exactly to that given in
(16.87) (cf. (16.39)). To emphasize this facet of their structure, let us define the functions
Y7 (u) by

Yh(u) = YI2) (y) = YR (o)
(1688) — /d(,{1752) <¢ K1,k2) L( )w m,n2)>
= Vd(rk1, k2) D52 (u)sge 1.

Now further recall that the D"(u) form a collection of non-equivalent unitary irreducible
representations of the compact Lie group SU(3) and hence satisfy the orthogonality relations
[20, p. 81]

wv =

(16.89) / du [D7(u)], D7’ (u)

SU(3)

d_j 5jj' 5#;/ v

where d; = d(j1,J2), the dimensionality of the representation j = (ji,j2) of SU(3) (see
(15.91)). It follows that the functions Y{"1%2) (1) defined by (16.88) obey the corresponding
orthogonality relations

4 5112/{’2 57'7" .

171

(16.90a) /du{ y(Rim2) (y )FYS’?’I’“@(U):@

SU(3)

Because the Y{"1%2)(4) are class functions with respect to SO(3), we may reéxpress these
orthogonality relations in the form

(16.90b) / de [0 ()] Y (€) = 5,y Gy
SU(3)/S0(3)

where here, in going from (16.90a) to (16.90b), we have assumed that the integral over the
subgroup SO(3) is appropriately normalized. Thus may we generalize the spherical harmon-
ics Yj(Q) to form a set of orthonormal functions Y{""2)(¢) defined on the coset space
U(3)/50(3).
We now return to the implications of the class relation (16.80) on the expansion of the
partial Gram matrix elements. Using (16.86) and the orthonormal class functions Y7 (c)
defined in (16.88), we see that one may write the partial Gram matrix elements in the form®®

(16.91) (s D = (e ) jpugrwr = Z Zb” Yr(e

where ¢ denotes the SU(3)/SO(3) coset to which u belongs. Furthermore, the summation
over kK = (K1, k2) in (16.91) must obey the following constraints:

(1) The representations D" = D(1:52) ;must appear on the right-hand side of the Clebsch-
Gordan series (16.77) for DI @ DJ’.

(2) Only even values of k1 and ko can occur, because for all other values of k1 and ko
the functions YZ(c) do not exist.

To give a more explicit description of the functions of interest, let us examine more closely
the constraints 1 and 2 enumerated above. Theorem 15.1, concerning the SU(3) represen-
tations (ji,j2) carried by homogeneous dynamical polynomials of degree [ in six variables,
shows that j; + j2 < [. Taking into account this restriction, we can use the Clebsch-Gordan
series (16.77) to determine which SU(3) representations k = (k1, £2) appear on the right-hand
side of (16.91). If one stares at the Clebsch-Gordan series long enough, it becomes “obvious”
that the SU(3) representations which occur are all (k1,%2) such that k1 + k2 < 2I. One

46The coefficients b in this expansion are not the same as those in (16.86).
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may confirm this by exercising the functions SU3reps[] and SU3DirectProduct[] defined
in the Mathematica package SU3.m (see Appendix H). We therefore conclude that when we
choose the linear symplectic transformations L(u) from the coset space U = SU(3)/S0O(3),
the functions of interest to us are those class functions Y(T'“"”) defined in (16.88) for which
K1+ ko < 2lnar < 2P. (As before, this implies that k1 and ko are both even.)

We turn now to the other manifold from which we shall consider selecting the linear
symplectic transformations £(u): the space U = [U(1)]? = U(1) ® U(1) ® U(1), which was
discussed in §15.4. To determine the functions of interest in this case, we may, as the astute
reader has already observed, employ a straightforward generalization of the argument given
at the end of §16.2.1 for the manifold U = [U(1)]? = U(1) ® U(1). All of the arguments carry
over as before; after the smoke clears, we conclude that when we choose the linear symplectic
transformations L(u) from the space U = U(1) ® U(1) ® U(1), the functions of interest to us
are the product exponentials e?#191¢12k20212k303 for o1l ki ko, ks € {P,P—1,...,—P} such
that |I€1| + |I€2| + |k3| S P.

16.3.2. Cubature Formulas for the Manifold SU(3)/SO(3). The second step in our program
for constructing discrete but optimal jolt decompositions in three degrees of freedom requires
us to find on the appropriate manifolds cubature formulas that work exactly for the functions
just identified in §16.3.1. When we choose the linear symplectic transformations £(u) from
the coset space U = SU(3)/SO(3), we want to find cubature formulas of the form

N
(16.92) Qnlf(c)] = _Zuaf(ci),

with N as small as possible, such that
(1693) QN[ (k1 Kz)( )] = 5/{105112057'“0”

for all k; and ko such that k1 + ke < 2P (with k1 and k2 both even). These conditions
(16.93) follow from the orthogonality relations (16.90b) together with the fact that, by the
first entry in Table 15.8, YS‘%,,O)( ) = <¢“0” ,L(c )z/JK(rO,O)>

The group SU(3) has dimension eight, and its subgroup SO(3) has dimension three; the
coset space SU(3)/SO(3) therefore has dimension five. Though we do not yet know the geom-
etry of this five-dimensional manifold—Ilet alone the appropriate measure dc for integration—
we can still discover cubature formulas by various empirical means. Before we discuss one
such method for discovering cubature formulas for this manifold, let us make an estimate
similar to (16.48) of the number of points N required by formulas of the form (16.92). To do
this, we first count how many conditions the requirement (16.93) imposes on our cubature
formula (16.92). Taking into account the representations that occur, and using (15.91) for
the dimensionality of a given representation, we find (after considerable algebra) that the
number of conditions equals

P P—k; P—k;
> A2k, 2k,) = Z > 2k +1)(2k + 1)(kr + ko + 1)
kl—O kQ 0 k1:0 k}2:0

= 3—10(P +1)(P +2)(2P + 3)(2P? + 6P + 5).

Now count how many variables we have available for constructing an N-point cubature for-
mula on the manifold SU(3)/SO(3). The fact that the manifold is five-dimensional suggests
we have N weights + 5N variables for the cubature points = 6N variables. Recall, however,
that in the case of two degrees of freedom we counted 3N — 3 free variables: we subtracted
three based on the symmetries of the two-sphere S?, symmetries related to the action of the
three-dimensional group SU(2) on S%. (Recall that SU(2) and SO(3) are homomorphic.) It
therefore seems reasonable in the present case, n = 3, to subtract eight—the dimensionality of
SU(3)—from 6N: thus, an N-point cubature formula on the manifold SU(3)/SO(3) appears
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to have 6N — 8 free variables. A comparison of this reckoning with our above count of the
number of conditions suggests that

1
6N—82gdP+1KP+%@P+3XMﬂ+6P+®.
Hence we obtain the estimate

180 3

for the number of points required by a cubature formula of degree P on the manifold

SU(3)/S0(3).

(16.94) N;ﬂ%ﬂpp:Li4P+1xP+m@P+ﬁxyﬂ+6P+5y+ﬂ

TABLE 16.5. A comparison between the rough estimate Ng3(P) for Nouin
(see (16.94)) and the lower bound N (P, 3) from Table 13.1.

P Ng(P) N(P,3)
3 43 3
4 114 9
5 260 12
6 529 17
7 988 22
8 1721 29
9 2838 37
10 4479 46
11 6783 56
12 9966 68

Table 16.5 lists the values of Ny3(P) as given by (16.94) for P € {3,...,12}, and it com-
pares these values with the lower bounds N (P, 3) from Table 13.1. Although the comparison
appears wildly unfavorable, we shall see later that there is reason to be more optimistic.

The reader may recall—and a glance at Table 16.1 will confirm—that each of the cubature
formulas we listed for the two-sphere S? obeyed certain symmetries. Indeed, many of the
cubature formulas used sets of points which were invariant under the action of some discrete
subgroup of SU(2). This suggests, by analogy, that we might be able to construct cubature
formulas for the manifold SU(3)/SO(3) based on finite discrete subgroups of SU(3). To see
how one might do this, observe that the elements of a discrete subgroup of SU(3) constitute a
set of points on the group manifold. We might therefore define the necessary linear symplectic
transformations by £; = L(u;), where the matrices u; are either the elements of a finite
discrete subgroup of SU(3), or some appropriate modification thereof. We shall discuss just
such an approach.

To build cubature formulas in the fashion just described, we must know the discrete sub-
groups of SU(3), and we shall discuss these presently. In addition, however, we must have
some method for gauging the effectiveness of whatever formulas we construct. One obvious
yardstick computes the left-hand side of (16.93) for all values of k1, k2, and 7 of interest and
compares the results with the right-hand side of (16.93)—perhaps by looking at how much
the sum of the squares of the left-hand side differs from the desired result 1. An alternate
yardstick (or meterstick, if you like), the one we shall use, constructs the Gram matrices I'({)
for all | < ;4 = P and compares their eigenvalue spectra with the continuum-limit spectra
determined in §15. We seek formulas that yield Gram eigenvalue spectra as close as possible
to the continuum limit.

The Lie group SU(3) contains a variety of distinct subgroups, both continuous and discrete.
These subgroups include such Lie groups as U(2), SU(2), and the like, which themselves
contain subgroups. Thus, for example, the discrete subgroups of SU(3) include the discrete
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subgroups of SU(2). Subgroups that arise in this fashion will not interest us here because they
correspond to leaving one or more degrees of freedom unchanged. (We have studied these
possibilities in §§16.1 and 16.2.) We shall therefore focus on those finite discrete subgroups of
SU(3) which are not also subgroups of some Lie group smaller than SU(3). These subgroups
are described in several references [38, 65, 73], and two of those references [38, 73] list in
detail the corresponding generators.*”

The subgroups of SU(3) of interest for our purposes—i.e., those subgroups which are both
finite and discrete—fall into two classes: the crystal-like groups,

3(60), X(108), %(168), X(216), 3(648), X(1080),
and the dihedral-like groups,
A(3n?), A(6n?),
where n € Z*. (In all cases the value in parentheses is the order of the subgroup.*®)
Though we shall look at results based on several of the subgroups just mentioned, we shall

examine most closely the particular SU(3) subgroup ¥(108). One may generate this group
3(108) by forming all possible distinct products of the three matrices

10 0
(16.95a) A=10 w 0],

0 0 w?

0 1 0
(16.95b) E=(0 0 1],

1 00
and

1 1 1 1
(16.95¢) V=-"so|1 w w?]|,

W3\l L2 W

where w = ¢27/3. We may give a succinct prescription for constructing all 108 distinct

elements as follows: First define I to be the 3 x 3 identity matrix; then the set of matrices
(16.96a) 8¢ = {I,E,E* V? EV? E*V?}

forms a real subgroup of order six contained within ¥(108). According to a standard result
in group theory, this subgroup 8¢ decomposes the group X(108) into a set of eighteen (= &68)
distinct cosets. One may therefore write the elements of ¥(108) in the form 8¢7;. Here
j € {1,...,18}, T; denotes a representative element from each of the different cosets, and
the notation 8¢7) means multiply each element of 8¢ on the right by 7). Before enumerating
a set of representative coset elements, we first introduce the concept of a group center [20,
p. 427]:

Definition. The center of a group G consists of those elements of § which commute with
every element of G.

47Cautionary note: Both of these references incorrectly state the generator Z, one of the elements used
to construct the SU(3) subgroup 3(168). The correct generator is

. fa b c a=¢ -,
Z:Z(b c a>, where b:§2—§5, and £7 =1

V7 c a b c—¢—¢b

48 N B. Reference [38] labels the corresponding crystal-like groups slightly differently:
2(60), 3(36), X(168), 3(72), X(216), 3(360).

Except in the cases of £(60) and ¥(168) the numbers in parentheses for this choice of labeling are a factor of
three smaller than the order of the corresponding subgroup given above.
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For the groups SU(3) and ¥(108) the center is given by the set of three elements

(16.96b) € = {I,wl,?I}.
If we now define T as the set of six elements
(16.96¢) T={I,A, A% V,AV, A*V},

it turns out that one may write representative elements for each of the eighteen (= 3 x 6)
cosets in the form CT. We may therefore denote all 108 (=3 x 6 x 6) elements of the SU(3)
subgroup ¥(108) in the concise form

(16.96d) 86CT,

where Sg, €, and T are the three sets of matrices defined in (16.96a)-(16.96¢).

How well do these subgroups work as raw material for building cubature formulas? To
answer this question, we proceed, as described earlier, to build various Gram matrices and
compare their eigenvalue spectra with those in the continuum limit. If we use an equal-weight
cubature formula, then the elements of the Gram matrix I'(l) are given by (see (11.9))

N M(1,3)

(16.97) L(1)rs = 13 >3 GV L)@ N (L)) GP),

_]lkl

where the unitary matrices u; are the elements of whatever discrete subgroup (or modification
thereof) we wish to test, and N equals the number of such matrices.

How well does the particular subgroup 3(108) work? Figure 16.7 shows the Gram eigenval-
ues for orders three (top) and four (bottom) obtained using the equal-weight formula (16.97)
with the matrices u; given by the elements (16.96) of 3(108); and it compares these results
with the continuum-limit values given in Table 15.9 (dashed lines). The results shown here
do not appear terribly promising—indeed, one of the eigenvalues for order four equals zero!
It turns out that we can do much better.

One may easily identify why plain, unvarnished ¥(108) does not work well: Recall that
the ¥(108) subgroup 8¢ defined in (16.96a) contains only real elements, hence only elements
of SO(3). It follows that the eighteen (right) cosets CT of X(108) with respect to 8¢ (see
(16.96d)) belong to the manifold SU(3)/SO(3). In other words, the 108 points defined on the
SU(3) group manifold by the elements of 3(108) comprise just eighteen distinct points on the
manifold of the coset space SU(3)/SO(3). As a consequence, if we use just the eighteen coset
representatives €7 to compute the Gram matrices (16.97), we should obtain the exact same
results as shown in Figure 16.7. This is indeed the case. Now recall that Ng3(3) = 43 > 18 (see
Table 16.5). This implies that we should not expect plain X(108) to yield the continuum-limit
eigenvalues for any value of I that interests us (I > 3).°

We must add a caveat to the argument just given in the last paragraph. As we shall soon
see, a modification of the elements in 3(108) works much better than plain ¥(108). Indeed,
the modified elements work so well as to render quite suspect the argument we gave leading
to the estimate Ng3(P) for the minimum number of points required by a cubature formula
of degree P on the manifold SU(3)/SO(3). In other words, we have perhaps been somewhat
glib in our derivation of (16.94) and in the argument of the last paragraph.

To see how we might modify the elements of ¥(108) so as to obtain an improved cubature
formula, recall what we have learned about ¥(108)’s group structure: it contains only eighteen
distinct cosets of SU(3)/S0(3). We would like to correct this shortcoming by modifying the
elements of ¥(108) in such a way as to remove this coset degeneracy. One method for
doing this simply applies to each element of 3(108) a similarity transformation generated by
some fixed element v € SU(3). The set of elements so generated—v¥(108)v~1—constitutes

490n the other hand, because the lower bound N(6,3) = 17 < 18 (see Table 16.5), we might hope that
33(108) would yield, at the very least, invertible Gram matrices for | < 6. The bottom graphic in Figure 16.7,
however, dashes even this hope.
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FIGURE 16.7. These two graphics compare the ¥(108) Gram eigenvalues
with those found in the continuum limit (dashed lines) for the cases [ = 3
(top) and | = 4 (bottom). In the figure for the I = 4 case, there is one
point in the lower left-hand corner, barely visible, which corresponds to a
zero eigenvalue. The Gram matrix elements (16.97) were computed using
MARYLIE’s computational engine [32].

another, possibly different, discrete subgroup of SU(3). This new subgroup, a modified
3(108), can have a different coset structure and may therefore work better than the original
3(108) for constructing a cubature formula. (The difficulty, of course, lies in choosing an
appropriate v.) It turns out that we need not perform the entire similarity transformation.
To see this, first observe that, by (13.15),

L(vujo™t) = L0 L(vu; ).

Because v is a fixed element in SU(3), it follows from this relation and Corollary 16.1 (on
page 132) that the Gram matrices constructed using either the elements vujv~! or the ele-
ments vu; differ by at most a unitary similarity transformation. Since similar matrices have
identical eigenvalue spectra, and since we focus on the eigenvalues, we may conclude that the
elements vu; will, for our purposes, work as well as the elements quv_l. Now also recall,
from the discussion in §13.3, that we may extract from the left of vu; any element of SO(3);
in other words, if v = rt, where r € SO(3), then it suffices to use t € SU(3)/SO(3) rather than
v € SU(3). We shall therefore search for a t € SU(3)/SO(3) such that the correspondingly
modified X(108)—i.e., tX(108)—yields Gram eigenvalue spectra as close as possible to the
continuum-limit spectra.

The search just described for the desired ¢t € SU(3)/SO(3) requires an appropriate param-
eterization for elements in SU(3)/SO(3). To write down one such parameterization, first note
that we may use (13.15) to write

(16.98) L(tuj) = L(uj)L(t) = L;T
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for the Lie transformations based on modified elements of ¥(108). Here £; = L(u;) and
T = L(t). A complete parameterization for the most general linear symplectic transformation
in Sp(6,R) is given in [30]. Restricting this parameterization to the SU(3)/SO(3) coset space
contained within Sp(6,R) yields one possible parameterization for 7 = L(t):

(16.99a) T = exp(:01b" + 050 + 0,40 + 0505 + 05°:),
where

b' = q1q2 + p1p2,
1
bt =S (ai +pi -5 - pd),
(16.99b) b* = qigs + p1ps,

b0 = g2q3 + paps,

1
b8 — 240202 2 902 92y
\/E(QI P+ &% + P2 — 205 — 2p3)
Then, with the modified linear symplectic transformations defined in (16.98), the correspond-
ing matrix elements (16.97) become

1
(16.100) PO = 3703 2= (GO, £, 7L, TQY, GV,
I jk

where 7 is parameterized by the five angles {61, 03, 04, 05,05}

To search for a useful cubature formula based on ¥(108), we use (16.100) with £; = £L(u;),
u; € 3(108), to compute the Gram matrices, and adjust the five angles 6; so as to maximize
0)
(16.101) 0, = 5.37151879339066, fs = 0.0901220988903537,

05 = —0.996058839052193, fs = 5.85468162906558,

04 = 3.67552887308850,

the minimum Gram eigenvalue A One particularly good choice of angles is

found after much searching and tweaking in an attempt to maximize the particular eigenvalue
)\ffgn. Figure 16.8 shows the Gram eigenvalues for orders three (top) through six (bottom) as
given by (16.100) using the angles (16.101). It also compares these results with the continuum-
limit values given in Table 15.9 (dashed lines). Observe that the eigenvalue spectrum for [ = 3
is very close to the continuum limit, and most of the eigenvalues for [ = 4 are also close to
the continuum-limit values. Even for the cases | = 5 and [ = 6 the agreement appears so
remarkable as to suggest that just a little more tweaking would bring these eigenvalues into
line—that this cubature formula is otherwise exact up through [ = 6!

After discussing why plain 3(108) might not work very well, we offered a caveat concerning
our estimate Ng3(P) (see Table 16.5) of the number of points required by exact cubature
formulas of given degree. The motivation for that caveat should now be clear: Table 16.5
suggests that a cubature formula that gives exact results up through order 6 would need
roughly 529 points, and yet a 108-point cubature formula produces the results shown in
Figure 16.8. Why this happens remains a puzzle.

In principle, one may apply the search procedure just described to improve on any cubature
formula constructed from a given set of unitary matrices. Attempts to do just this with some
of the dihedral-like groups, however, have not (yet) met with the same success as obtained
with the crystal-like group 3(108). See Table 16.6, which lists the results of some preliminary

efforts to maximize )\52 using five of the dihedral-like groups.

n

16.3.3. Cubature Formulas for the Three-Torus. When we choose the linear symplectic trans-
formations £(u) from the space U = U(1)® U(1)® U(1), the required integral (15.140) covers
three separate circles S'. In other words, the integral covers the three-torus T? = S' ®S'®S!.
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TABLE 16.6. This table lists the best results so far of efforts to maximize
AW using five of the dihedral-like groups. For comparison, recall that the

continuum-limit value of A equals 53= ~ 0.004166 - - -.

min 240 —
group n order max )\fsgn
A(3n?) 2 12 0.000247
3 27 0.00284
4 48  0.00342
A(6n?) 2 24  0.00176
3 54 0.00366

We can find cubature formulas in this case by making suitable generalizations of the argu-
ments given in §16.2.4.

Recall from the end of §16.3.1 that the functions of interest to us here are the product
exponentials e?2k101¢12k202¢12ksbs wwith ky ko, k3 € {P,P —1,...,—P} such that |k| + |ka| +
|ks| < P. To simplify later discussion, we generalize the definition of the symbol Xp (cf.
(16.54)) by writing

(16.102) Kp =
{(kl,k27k3) | kl,kg,k3 S {P,P— 1,...,—P} and |k1| + |k2| + |k3| < P}

As before we define K’ by (16.55): it denotes the set Kp with the pair (0,0) removed. We
now want to find minimal cubature formulas that yield exact results on the manifold T? for

all of our product exponentials ¢?2#101¢i2k202¢i2k303. hence we seek cubature formulas of the
form

N
(16.103) Qn[f(01,02,03)] = > w;f(01:, 02, 05:),

i=1

with N as small as possible, such that
(16.104) Qn [er2F0eRa02e2R205] = 6o, o, dong

for all triplets (kq1, ko, k3) € Kp.
By analogy with (16.59) we shall look for cubature formulas in the form of lattice rules
that satisfy (16.104). In particular, we shall try

N-1
(16.105) QN[f(01,02,03)] = % Z FIC N NGE ]
=0

where N, «, and (8 are a set of judiciously chosen positive integer constants. Then, by a
straightforward generalization of the argument leading from (16.59) to (16.60), we deduce
that one must select IV, «, and 3 so as to ensure
2(/€1 + aks + ﬁk3)
N

We may easily identify several constraints on the constants o and § by making use of the
observation that in order to satisfy (16.106), we cannot allow ki + aks 4+ Sk3 to vanish for
any triplet (ki, ks, ks) € K’p. First, since (k1,—1,0) € X, for all k; € {0,1,...,P — 1}, it
follows that « cannot belong to the set {0,..., P — 1}; hence

a> P

(16.106) ¢ 7 for all triplets (ki, ko, k3) € K'p.

By a similar argument it also follows that

p=P.
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Second, since (0,1, —1) € X5 whenever P > 1, it follows that

a#p

unless P = 1. And third, the symmetry between ko and k3 in (16.106) implies that we may
always select @ and 3 such that o < 3. Testing a wide range of a’s and 3’s that satisfy
these constraints, and searching for the smallest N (which we shall denote N;3) that satisfies
(16.106), we obtain the values listed in Table 16.7 for «, 3, and Nys.

TABLE 16.7. This table lists for P € {3,...,12} values for a, 3, and N = Nyo
that appear to make (16.105) a minimal cubature formula on the three-torus

T3.
P o 6 th
3 4 6 15
4 5 8 27
5 7 11 49
6 10 16 71
7T 14 23 109
8§ 19 26 145
9 22 36 207
10 24 39 263
11 33 46 359
12 36 50 427

16.3.4. Jolt Decomposition in Three Degrees of Freedom. Let us now summarize what we
know about the process of jolt decomposition in three degrees of freedom. We begin with a
set of homogeneous polynomials,

M(1,6)

=Y daw,
r=1
of degree I < P and want to decompose them into a linear combination of jolts. In other
words, we wish to write these polynomials in the form (¢f. (16.62))
M(1,3)

1 l l
(16.107) hi = 3105 3 wjal) £;QL.

—

—

Jj=
The jolt strengths ag-lk), the sensitivity vectors o7, and the Gram matrix elements T'(1),s are
given by (¢f. (16.64)—(16.66))

M(1,6)
l — s
(16.108) ) = 3" OrW) ok,
r,s=1
(16.109) o3, = (GV, £,Q0),
and
1 N M(1,3)
(16.110) PO = 37055 > Wi 0Ok
)= k=1

To complete the description, of course, we must specify the weights w; and the linear sym-
plectic transformations £.. These quantities are based on various cubature formulas, and we
have examined, in §§16.3.2 and 16.3.3, two different possibilities.
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The first possibility we discussed requires the use of cubature formulas for the manifold
U(3)/S0(3). To our knowledge, however, the subject of SU(3)/SO(3) cubature formulas has
never been studied before, and no results are available in the literature. We have partially
explored, as an initial approach to the problem, the possibility of constructing suitable cuba-
ture formulas based on the use of optimally oriented discrete subgroups of SU(3). To do so,
we have employed linear symplectic transformations of the form given in (16.98),

L(tug) = £;T.

Here £; = L(u;) has the matrix representation M (u;) given by (13.11), where the u; belong
to some appropriate finite subgroup S of SU(3); and 7 = L(¢) is given by (16.99), where, as
discussed on p. 162, the 3 x 3 matrix ¢ € SU(3)/SO(3) serves to rotate the subgroup S into
some optimal orientation within the full group SU(3). (Here we mean optimal in the sense
that the resulting cubature formula, when used in (16.110), produces Gram matrices with the
same eigenvalue spectra as in the continuum limit for as high a degree [ as possible.) In certain
special cases one can determine the action of 7 analytically, but for arbitrary values of the
five angles {61, 03,04, 0¢,0s} one must use numerical techniques [30, 66]. For the particular
subgroup Y(108) we have found, as Figure 16.8 suggests, that the angles given by (16.101)
appear very nearly optimal. We emphasize that the optimum values of those five angles will
depend on the particular choice of subgroup .S, and that the differences between the computed
and continuum-limit eigenvalue spectra will in all likelihood depend quite sensitively on those
values.

The second possibility—that of using cubature formulas for the three-torus T3—means
that the linear symplectic transformations have the form given in (15.135) (with n = 3),

R(917 627 93) = Rl (91)R2(92)R3(93)7
which has the corresponding matrix representation
et 0 0
M(91,92,93)—M< 0 e o >
0 0 e

Using (13.11) and the angles defined in the lattice rule (16.105), we can express this repre-
sentation in the specific form

(16.111) M (01, 02;,03;) =

cos(ifi) 0 0 Sin(?viti) 0 0
0 cos (a?vitg) 0 ‘ 0 sin(a ?\fi) 0
0 0 cos (337 0 0 3111(627”)
. 27j 2mj ’
—s1n(—ts) 0o 0 cos(NS) 0
0 —sin(afv%) 0 . 0 cos(ai;”) O2 .
0 0 —sin( NLtZ) 0 0 cos( Nitfi)

where j € {0,1,..., N — 1}, and N3, o, and § are determined by the appropriate lattice
rule. If one uses values of N3, o, and § from Table 16.7, then the corresponding weights are
constant: w; = 1/Ny3.

Thus for the manifold T? we find that the action of the linear symplectic transformations
R (61,6025, 03;) on the ¢’s is given by

q1 q1 COS(@U) + P1 Sin(@lj)

R(615,625,03;) | a2 | = | g2 cos(02;) + p2 sin(fa;)

q3 g3 cos(8s;) + p3 sin(fs;)

(16.112) o

qlcos( )+p sin (372 )
= qgcos(aN )—l—pgsm(aN—J) ,
g3 cos (3 th) + p3sin(B37L)
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where the second equality results from the use of a lattice rule of the form (16.105).



17. APPLICATIONS TO MAPS OF PHYSICAL INTEREST

Using the jolt decompositions described in §16 together with the procedures detailed in
Appendices B and C, we can now convert any truncated Taylor series map 7, of order P —1
into a Cremona map Cp—i.e., a polynomial symplectic map—in such a way that 7, and Cp
agree through terms of order P — 1. In other words, given any truncated Taylor map 7, we
can obtain a Cremona symplectification Cp. There then arises the natural question “How well
does this work?” To answer this question (at least partially), we shall look at two particular
physical systems: (i) the anharmonic oscillator described in §6, and (ii) the transverse motion
of electrons in the Berkeley Advanced Light Source (ALS) storage ring.

17.1. Cremona Symplectification of the Anharmonic Oscillator

For one degree of freedom we may use the particular jolt decomposition given in §16.1.7,
along with the procedures described in Appendices B and C, to effect a Cremona symplec-
tification of any truncated Taylor map—of arbitrary order—that arises from a Hamiltonian
dynamical system. Because the one-degree-of-freedom code TLIE2, mentioned earlier in §6.5,
works to arbitrary order, it is a straightforward matter (well, almost ...) to write a TLIE2
function that automates Cremona symplectification, also to arbitrary order. This having
been done, we can now experiment with how well Cremona symplectification works in one
degree of freedom.

To test Cremona symplectification in one degree of freedom, we shall examine how well
it works for the anharmonic oscillator illustrated in Figure 6.2 and described by the Ham-
iltonian (6.1). In particular, we shall look at two different measures of how well Cremona
symplectification works: The first compares a truncated Taylor map and its symplectification
to see how well they reproduce the non-linear part of the map. The second compares their
performances for long-term tracking.

17.1.1. Results for the Non-Linear Part of the Map. Using a Lie algebraic formalism, one can
determine a straightforward procedure for extracting the non-linear part of a map for any
Hamiltonian system. First suppose we write the map under consideration in the factored-
product form (see (9.17))

M _ e:fl:e:f?:e:f?’:e:f‘“ - e:fl:e:fz:/\f,

where, of course, N denotes the non-linear part of M. If the map of interest already exists in
factored-product form, then we simply ignore the /1" and e'/?* factors to obtain A/; otherwise,
we write

(17.1a) N =e H2em i M,

To take this prescription another step forward, let this map N act on phase space. Now
observe that the translational and linear parts of M act according to the rules

efiiy = 2 4 2°,
and

ef? 2z = Rz,

respectively, where z¢ denotes a constant vector in phase space, and R denotes the matrix
representation of e'/2¢ (¢f. (9.12)). Hence if we write

2= Mz = Zf(zi)a
then we obtain the non-linear part of the map in the form
2l = Nzt = e e il (5h) = emi 20 (50 — 29)

(171b) _ Zf(efcfz:(zi _ ZC)) _ Zf(Rflzi — ZC).
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-1 ' 0 ' 1
FIGURE 17.1. A grid of initial conditions. The football-shaped outline shows
the boundary of the stable region in phase space for the anharmonic oscilla-
tor.

-1 ' 0 ' 1
F1GURE 17.2. This graphic shows the result of applying once to the initial
conditions shown in Figure 17.1 the non-linear part A/ of the exact time-one
map for the anharmonic oscillator.

The reader will note that this rule is quite general: it is independent of any particular map
representation, and it does not depend on the number of degrees of freedom.

Figure 17.1 shows a grid of initial conditions in phase space superimposed on an outline
(the football-shaped boundary) of the part of the separatrix that bounds the stable region
around the origin of the anharmonic oscillator (c¢f. Figure 6.2). Figure 17.2 then shows what
happens to the grid of initial conditions after one application of the non-linear part A/ of the
time-one map for the anharmonic oscillator. To make sense of this picture, recall that near
the origin, the motion is essentially linear; hence the non-linear part of the map will have
little effect in this region. In addition, because the period of the motion increases as one
approaches the separatrix, the fact that the linear part of the map gives a simple clockwise
rotation of the whole of phase space means that points near the separatrix will appear skewed
counterclockwise. One can see both these effects by comparing Figures 17.1 and 17.2.
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-1 0 1
FI1GURE 17.3. These graphics show for the anharmonic oscillator the results
of applying once to the initial conditions shown in Figure 17.1 the non-linear
part of the truncated Taylor maps 7, (top), 7 (middle), and 775 (bottom)
for time 7 = 1.



§17.1

CREMONA APPROXIMATION OF TRANSFER MAPS

-1 0 1
FIGURE 17.4. Theses graphics show for the anharmonic oscillator the results
of applying once to the initial conditions shown in Figure 17.1 the non-linear
part of the Cremona maps C, (top), Cg (middle), and C;5 (bottom) obtained
by Cremona symplectification of the corresponding truncated Taylor maps
1y, Tg, and T}, for time 7 = 1.
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Figure 17.3 shows the results of applying to the grid of initial conditions in Figure 17.1 a
series of successively higher order truncated Taylor maps for the non-linear part A of the time-
one map for the anharmonic oscillator. These truncated Taylor maps contain terms through
order three (top), seven (middle), and eleven (bottom). A comparison of these results with
the exact result in Figure 17.2 shows that the third-order truncated Taylor map 7, performs
well over a substantial part of the stable region, inside the separatrix, and also for small
regions towards the upper-right and lower-left, just outside the separatrix. The seventh-order
truncated Taylor map 73 performs well for most of the initial conditions; indeed, it gives poor
results only for those initial conditions near the upper-left and lower-right edges of the grid
of initial conditions shown in Figure 17.1. And the eleventh-order truncated Taylor map 77,
works well for very nearly all of the initial conditions. These results should not surprise the
reader: as a comparison with Figure 6.6 shows, all of the initial conditions in Figure 17.1 fall
well inside the domain of convergence for the anharmonic oscillator time-one map.

Figure 17.4 shows results comparable to those in Figure 17.3, but using instead Cremona
symplectifications of the corresponding truncated Taylor maps. The Cremona symplectifi-
cation of the third-order truncated Taylor map—i.e., C,—performs well over essentially the
same region of phase space as did 7,. The other two Cremona symplectifications, Cg and
Cy4, however, do not appear to work as well as their corresponding truncated Taylor series
maps. Indeed a superficial comparison might even lead one to think that Cg is better than
C,4; but a more careful comparison shows that C;, does in fact perform better than Cq inside
the separatrix and in the region just outside the separatrix.

Figures 17.5, 17.6, and 17.7 show results similar to those in Figures 17.2, 17.3, and 17.4,
but for the anharmonic oscillator time-seven map. The comparisons are not so obvious as in
the time-one case, but it remains true that the truncated Taylor maps become more accurate
at higher order; and similarly for the corresponding Cremona symplectifications shown here.
That the truncated Taylor series maps do not do well near the edge of the stable region is,
of course, consistent with Figure 6.5, which shows that for the time-seven map the boundary
of the domain of convergence cuts inside the separatrix.

0.0t

q

1 ' 0 ' 1
FIGURE 17.5. This graphic shows the result of applying once to the initial

conditions shown in Figure 17.1 the non-linear part N of the exact time-seven
map for the anharmonic oscillator.
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q

-1 0 1
FIGURE 17.6. These graphics show for the anharmonic oscillator the results
of applying once to the initial conditions shown in Figure 17.1 the non-linear
part of the truncated Taylor maps 7, (top), 7 (middle), and 775 (bottom)
for time 7 =1T7.
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q

-1 0 1

FIGURE 17.7. These graphics show for the anharmonic oscillator the results
of applying once to the initial conditions shown in Figure 17.1 the non-linear
part of the Cremona maps C, (top), Cg (middle), and C;5 (bottom) obtained
by Cremona symplectification of the corresponding truncated Taylor maps
14, 13, and T;, for time 7 = 7.
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17.1.2. Results of Long-Term Tracking. Recall from §8 that our principal motivation for de-
veloping Cremona symplectification was to find a better method for doing long-term tracking
of Hamiltonian dynamical systems. Figures 17.8-17.11 address just this issue. Each graphic
in these figures shows the result of applying one thousand iterations of either a truncated
Taylor map or its Cremona symplectification to a small set of initial conditions. Figure 17.8
shows the results obtained using time-one truncated Taylor maps of (from top to bottom)
orders three, seven and eleven; and Figure 17.9 shows the results obtained using the corre-
sponding Cremona symplectifications. Figures 17.10 and 17.11 show similar results, but for
the time-seven maps for the anharmonic oscillator. All of these pictures should be compared
to the exact phase-space portrait shown in Figure 6.2.

Comparisons between the various truncated Taylor maps and their corresponding Cremona
symplectifications suggest that for the purposes of long-term tracking a Cremona symplectifi-
cation represents a significant improvement over its underlying truncated Taylor series map,.
Indeed, even the lowest-order Cremona symplectifications appear to work remarkably well.
In the uppermost graphic of Figure 17.9, for example, the inner three orbits deviate from the
exact result by no more than the width of the curve; and the fourth orbit (counting from the
origin) differs only slightly from the exact result. On the other hand, the underlying truncated
Taylor series map—used in the uppermost graphic of Figure 17.8—works well only for much
smaller amplitudes. Putting the matter slightly differently, we can say that one must use a
relatively high order truncated Taylor map in order to achieve results comparable to those
given by C,. And if the number of iterations is very large, say 10° rather than 103, then even
a high-order Taylor map gives unsatisfactory results. In general, violations of the symplectic
condition entailed by the use of truncated Taylor maps add up over successive iterations and
thereby make it impossible to draw conclusions about long-term stability. Cremona maps, by
contrast, can be iterated infinitely often. Figures 17.10 and 17.11 tell much the same story
for the time-seven map.

In the bottom graphic of Figure 17.9—the Cremona symplectification of 7;,—we have
omitted the football-shaped outline of the stable region of phase space. In its place we have
added a pair of initial conditions very near the hyperbolic fixed points at (¢°, p*) = (&1,0).
The large dots trace the result of iterating the Cremona symplectification C,, with these two
initial conditions, and one can see that C,5 for 7 = 1 renders accurately all of the phase-space
portrait for the anharmonic oscillator on and within the separatrix.

Let us pause for a moment to remind ourselves that the process of Cremona symplecti-
fication begins with a truncated Taylor series map and adds higher-order terms solely for
the purpose of satisfying the symplectic condition. All of the information about the partic-
ular dynamical system therefore comes just from a finite set of Taylor series coefficients. In
other words, the striking improvement that a Cremona symplectification appears to make on
a truncated Taylor map derives solely from imposing the symplectic condition.

The reader should not, however, become overly excited by the prospect of higher-order
Cremona symplectification. Figure 17.12 shows results similar to those in Figure 17.11 using
Cy6, & Cremona symplectification of the order-25 truncated Taylor map 7,4 for time 7 = 7.
This figure makes it clear that we have much to learn about Cremona symplectification—even
for one degree of freedom. On the other hand, as Figure 17.5 makes clear, the non-linear part
N of the time-seven map is very non-linear. It should therefore not surprise us that Cremona
symplectification performs less well in this case.
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q

-1 0 1

FIGURE 17.8. These graphics show for the anharmonic oscillator tracking
results obtained from 1000 iterations of the truncated Taylor maps 7, (top),
Ty (middle), and 7,5 (bottom) for time 7 = 1 using the initial conditions
p' =0, ¢' € {£0.1,£0.3,40.5, 0.7, £0.9}.
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FIGURE 17.9. These graphics show for the anharmonic oscillator tracking
results obtained from 1000 iterations of the Cremona maps C, (top), Cg
(middle), and C;, (bottom) for time 7 = 1 using the initial conditions p* = 0,
q' € {£0.1,40.3,40.5,£0.7,40.9}. The bottom figure also uses the initial
conditions (g%, p?) = (1.0, —0.2) and (¢*, p*) = (-1.0,0.2).
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q

-1 0 1

FIGURE 17.10. These graphics show for the anharmonic oscillator tracking
results obtained from 1000 iterations of the truncated Taylor maps 7, (top),
Ty (middle), and 7,5 (bottom) for time 7 = 7 using the initial conditions
P =0, ¢' € {£0.1, 0.3, £0.55, £0.6, £0.72}.
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q

-1 0 1

FIGURE 17.11. These graphics show for the anharmonic oscillator tracking
results obtained from 1000 iterations of the Cremona maps C, (top), Cg
(middle), and C,, (bottom) for time 7 = 7 using the initial conditions p’ = 0,
q' € {#0.1,40.3,£0.55,+£0.6, £0.72}. The top figure also uses the initial
conditions (¢%,p’) = (0.55,—0.18) and (¢, p’) = (—0.55,0.18). The stable
fixed points near those last two initial conditions are period-one fixed points.
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q
-1 0 1

FI1GURE 17.12. This figure shows for the anharmonic oscillator tracking re-
sults obtained from 1000 iterations of Cy4, a Cremona symplectification of
the order-25 truncated Taylor map 7, for time 7 = 7 using the same initial
conditions as in the last two figures: p' = 0, ¢* € {£0.1,40.3,40.55,
+0.6,+0.72}.

17.2. Cremona Symplectification of the Advanced Light Source

In analogy with the discussion just given in §17.1, we may use any of the jolt decompositions
described in §16.2.5 to effect a Cremona symplectification of truncated Taylor maps that arise
from Hamiltonian dynamical systems in two degrees of freedom. Automating this process in
two degrees of freedom is only slightly more difficult than in one degree of freedom, and this
has been done by Etienne Forest in his computer code IRWIN,? built on top of LIELIB, his
library of Lie algebraic routines.

To test Cremona symplectification in two degrees of freedom, we shall look at how well it
works for modeling the transverse motion of electrons in the Lawrence Berkeley Laboratory
Advanced Light Source (ALS) storage ring. As its name implies, the ALS produces light
and hence the electrons in the storage ring steadily lose energy in the form of synchrotron
radiation. It follows that one cannot model all aspects of this dynamical system within a
Hamiltonian framework, and our treatment of the ALS will ignore the effects of synchrotron
radiation. For our purposes, we shall study only the symplectic part of the motion.

Figures 17.13-17.21 show the results of some computer experiments that test Cremona
symplectification using the particular jolt decomposition based on cubature formulas for the
two-sphere S?. Underlying each of these figures is a truncated one-turn Taylor series map
(which is computed ignoring synchrotron radiation) for the transverse motion of electrons in
the ALS.

Figure 17.13 shows in the (z,p,) and (y,p,) planes the result of applying both the linear
and non-linear parts of a fourth-order truncated Taylor map 7; once to a beam of initial
conditions. Those initial conditions fill a four-dimensional sphere of radius 0.001 and have
a uniform spacing of 0.0002 in the transverse phase space (z,pz,y,py). Figure 17.14 shows
results comparable to those in Figure 17.13, but using a Cremona symplectification C; of
the truncated Taylor map 75 based on the twelve-point cubature formula for the two-sphere

50 This code was named after John Irwin, whose ideas [51], were very important to the early considerations
of jolt maps and Cremona symplectification (see footnote 16). At our request, it was modified to implement
Cremona maps in the form (10.13) (with (10.14)) using the jolt decomposition (11.2) based on any given set
of ﬁj. Prior to the work of thesis, however, no good sets of [,j were known, and the method was largely

abandoned.
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FIGURE 17.13. These graphics show, in the (x,p,) and (y,p,) planes, the
result of applying once to a set of initial conditions a fourth-order truncated
Taylor map 7 for the ALS.

S2. The agreement between these figures shows that the two maps—7; and its Cremona
symplectification 7;—agree very well with one another for a single application of the map.

Figures 17.15-17.21 show some studies of long-term tracking in the ALS. Figure 17.15
shows tracking results in the (z,p,) plane for 1000 iterations with a ninth-order truncated
Taylor map using ten different initial conditions. Those initial conditions were spaced equally
along a line in the (z,y) plane with p, = p, = 0. These results are very close to the
“exact” result for the 1000 iterations shown [39]. Although Figure 17.15 shows results only
in the (z,p,) plane, the tracking was done using the full four-dimensional phase space. The
coupling between the horizontal and vertical (i.e.,  and y) planes accounts for the wiggles
and separations seen in some of the orbits. Figure 17.16 then shows the results obtained using
1000 iterations with a fourth-order truncated Taylor map 75 on the same initial conditions
as in Figure 17.15. The next two figures show the corresponding results obtained using two
different C; Cremona symplectifications of 7;. The first, C£2"¢, uses a set of twelve randomly
chosen £; and gives the tracking results shown in Figure 17.17. The second, Cevb | uses twelve
L; based on (16.67) and the fifth-order, twelve-point cubature formula for the two-sphere (see
Table 16.1). It gives the tracking results shown in Figure 17.18.
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FIGURE 17.14. These graphics show, in the (x,p,) and (y,p,) planes, the
result of applying once to a set of initial conditions a Cremona symplectifi-
cation Cy of the truncated Taylor map 7 for the ALS.

From Figures 17.15 and 17.16 we see that compared to the “exact” map (i.e., the ninth-
order truncated Taylor map), the fourth-order truncated Taylor map 7; gives good results
only for the first three orbits (counting from the origin). The Cremona symplectification
Crond based on randomly chosen L; gives slightly better results, see Figure 17.17: the first
four orbits agree well with one another, and the fifth is debatable. On the other hand,
the Cremona symplectification C£“® based on the twelve-point cubature formula for the two-
sphere, see Figure 17.18, gives results that seem to agree very well with the “exact” results
for all ten of the orbits shown! As in one degree of freedom, the improvement that Cre-
mona symplectification makes to a truncated Taylor map derives solely from imposing the
symplectic condition; converting from a truncated Taylor map to a Cremona map adds no
other information about the dynamical system. However, as shown by a comparison of Cg‘md
and C£“’, how one performs that symplectification matters a great deal. At this point the
reader should look again at the histogram in Figure 16.2. That figure shows for one degree
of freedom the distribution of minimum Gram eigenvalues computed from Gram matrices
built using 1000 different randomly chosen sets of £;; and it shows that very nearly all sets
of £, are terrible—only a few are even mediocre. On comparing Figures 17.17 and 17.18, we
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FIGURE 17.15. This figure shows, for the ALS, tracking results in the (x, p,)
plane for 1000 iterations of a ninth-order truncated Taylor map using ten
different initial conditions spaced equally along a line in the (x,y) plane.
The y degree of freedom is similarly excited, but not shown.
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FIGURE 17.16. This figure shows, for the ALS, tracking results in the (x, p,)
plane for 1000 iterations of a fourth-order truncated Taylor map 7; using the
same initial conditions employed in Figure 17.15.
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FIGURE 17.17. This figure shows, for the ALS, tracking results in the (x, p,)
plane for 1000 iterations of a Cremona symplectification C£%"¢ of the fourth-
order truncated Taylor map 75 using the same initial conditions employed
in Figure 17.15. In this case the £; were chosen randomly.
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FIGURE 17.18. This figure shows, for the ALS, tracking results in the (x, p,)
plane for 1000 iterations of a Cremona symplectification Cg“b of the fourth-
order truncated Taylor map 7; using the same initial conditions employed in
Figure 17.15. In this case the £; were based on the fifth-order, twelve-point
cubature formula for the two-sphere.
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FIGURE 17.19. This figure shows, for the ALS, tracking results in the (x, p,)
and (y,py) planes for 4000 iterations by a ninth-order truncated Taylor map
T, using a single initial condition. (For this and the following two figures,
the ALS lattice used contains extensive skew coupling not present in the
lattice used for the earlier figures.)

see that same idea again in two degrees of freedom: randomly chosen £; do not work well
(see footnote 50), and the techniques developed in this thesis for finding optimal®! Cremona
symplectifications can indeed make a substantial difference.

Figures 17.19-17.21 show tracking results in the (z, p,) and (y, p,) planes (upper and lower
graphics, respectively) using an ALS lattice with extensive skew-coupling (not present in the
lattice used for the previous figures). Those three figures show the result of 4000 iterations
applied to the single initial condition (x,ps,y,py) = (0.004,0,0.002,0) using respectively a
ninth-order one-turn truncated Taylor map 77, a sixth-order one-turn truncated Taylor map
7, and a Cremona symplectification C; of the truncated one-turn Taylor map 7,. The Cre-
mona symplectification used here was based on the seventh-order, twenty-four-point cubature
formula for the two-sphere (see Table 16.1). As in Figure 17.15, we may assume the results
from the ninth-order truncated Taylor map, shown in Figure 17.19, to be exact—for the
limited number of iterations shown.

51Here we mean optimal in the sense described in §12.1
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FIGURE 17.20. This figure shows, for the ALS, tracking results in the (x, p,)

and (y, py) planes for 4000 iterations by a sixth-order truncated Taylor map
7T, using the same single initial condition employed in Figure 17.19.

Because of the additional skew-coupling present in the ALS lattice used for Figures 17.19—
17.21, one cannot easily identify an orbit along which a particle travels. But it is immediately
obvious that the sixth-order truncated Taylor map will not do the job. On the other hand, the
Cremona symplectification C; produces a result that agrees remarkably well with the ninth-
order truncated Taylor map (i.e., the “exact” map). Indeed, if we look just at the envelopes
of the regions occupied by the orbits in the phase space planes of (x,p;) and (y,py), we find
that they appear indistinguishable from one another. At the risk of of being repetitive, we
say again that the improvements we see in the results come from just two sources: imposing
the symplectic condition, and performing that symplectification in an optimal fashion. We
also remark that if we track more turns (i.e., make more iterations) with 77, it also will
exhibit the non-symplectic disease already apparent for 7, at 4000 turns. By contrast, the
Cremona symplectification C; can be iterated for an arbitrarily large number of turns.
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FIGURE 17.21. This figure shows, for the ALS, tracking results in the (x, p,)
and (y, py) planes for 4000 iterations using a single initial condition (that of
Figure 17.19) by a Cremona symplectification C; of the sixth-order truncated
Taylor map 7,. Here the Cremona symplectification uses the jolt decomposi-
tion based on the seventh-order, twenty-four-point cubature formula for the
two-sphere.
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The set of all Hamiltonian systems provides useful models for a broad range of natural
phenomena and, as such, constitutes a distinctive class of dynamical systems. An important
focus in this thesis concerns the symplectic condition, a characteristic property of all Hamil-
tonian systems. Numerical experiments demonstrate—and the figures in §17 confirm—that
whenever we use a transfer map to model a Hamiltonian system for long periods of time,
it behooves us to use a map that respects the symplectic condition. For the complicated
dynamical systems of research interest, we usually know only a truncated Taylor map that
approximates the true transfer map. Therefore, at the principal focus in Part IT of this thesis
lies the question of how best to symplectify a given truncated Taylor map that approximates
the behavior of a Hamiltonian system.

In essence, Cremona symplectification—the method developed here—adds to each of the
series that appear in a truncated Taylor map a finite number of terms in such a way that
the resultant map (which will still be a polynomial map) satisfies the symplectic condition.
In practice the method uses the procedure described in §11 to obtain jolt decompositions of
homogeneous polynomials, together with the procedures in Appendices B and C to convert a
given truncated Taylor map (for a Hamiltonian system) into a corresponding Cremona map
written as a product of N jolts. Here, each jolt is a polynomial symplectic map of the form
L g’

3

where j € {1,..., N}, the Ej, are a set of linear symplectic transformations, and the corre-
sponding ¢/ are polynomials in the ¢’s alone. (See §10.)

In broad outline, the Cremona symplectification just described is the same as that first
given by Irwin [51]. There are, however, some significant differences in the details: First, we
choose our linear symplectic transformations from a larger space than did Irwin; this makes
what we call jolts rather more general than the maps used by Irwin. Second, we have intro-
duced in (10.9) a very useful scalar product (,) which is invariant under the U(n) subgroup
of Sp(2n,R). Third, we have used that scalar product to define sensitivity vectors, Gram
matrices, and Gram operators—all useful concepts, not just for computing the coefficients of
the monomials that appear in the jolt polynomials g7, but, most important, for characteriz-
ing the quality of the jolt decompositions one can obtain. This last holds the key that opens
the door to optimal Cremona symplectification. Note here that the adjective “optimal” is
essential: symplectifying a map is not enough—one must do so in an optimal fashion.

In §12.1 we developed a criterion for identifying optimal jolt decompositions, and hence
optimal Cremona symplectifications: choose a set of N linear symplectic transformations £;
so as to make the smallest Gram eigenvalue as large as possible. In §13 we examined which
were the relevant £; for our purposes. We showed that one need not examine the whole of
Sp(2n, R) in looking for good sets of L: it suffices to restrict our search to the right coset space
U(n)/O(n) contained within Sp(2n,R). Finding optimal Cremona symplectifications then
requires some means for determining the maximum possible values for the minimum Gram
eigenvalues. Using some very general arguments in §14, we then identified the continuum
limit as the place to find those optimal Gram eigenvalues.

In §15 we used a variety of group-theoretical arguments and a great deal of paper to
calculate the Gram eigenvalues in the continuum limit. These are given in (15.16) for one
degree of freedom; in Tables 15.6 and 15.7 for two degrees of freedom; and in Table 15.9
for three degrees of freedom. We also looked at the possibility of using the group manifold
[U(1)]" contained within Sp(2n,R) as the space from which to choose the £;. For this
manifold Table 15.10 contains the continuum-limit Gram eigenvalues for both two and three
degrees of freedom.

Having identified the optimal Gram eigenvalues, we then addressed in §16 the question of
how to uncover finite discrete sets of £; which yield Gram matrices with eigenvalue spectra
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identical to those obtained in the continuum limit. We first showed that in one degree of
freedom randomly chosen £ are wholly unsatisfactory (see Figures 16.1 and 16.2). Moreover,
Figure 16.3 suggests that even if one has a very good idea of where to look in the space of £,
randomly chosen £; in the right neighborhood are still unsatisfactory. In general these two
statements hold even more so for two and three degrees of freedom. With these difficulties in
mind, we showed how one may use various quadrature and cubature formulas to determine
sets of £, which yield Gram matrices with eigenvalue spectra identical to those obtained in
the continuum limit. In §16.1.7 for one degree of freedom we identified such sets of £; for
arbitrary order. In §16.2.5 for two degrees of freedom we identified nearly optimal sets of £,
for various orders as high as 14. And in §16.3.4 for three degrees of freedom we have identified
one set of 108 £, that yield Gram eigenvalues identical to those in the continuum limit up
through at least order six. In addition, we have identified two potentially useful paths that
may lead to other good, possibly optimal, sets of L;.

Using some of the good sets of £, identified in §16, we then compared various Cremona
symplectifications in one and two degrees of freedom with corresponding exact and truncated
Taylor map results. We saw that in general one application of either a truncated Taylor map or
its Cremona symplectification to a beam of initial conditions gave comparable results. On the
other hand, for long-term tracking, the Cremona symplectifications performed substantially
better. Indeed, Cremona symplectifications of low-order truncated Taylor maps often did as
well as or better than truncated Taylor maps of significantly higher order.

Perhaps we should not be too surprised that for long-term tracking a Cremona symplec-
tified Taylor map works much better than its underlying truncated Taylor map—after all,
the symplectic condition does constitute a significant constraint on Hamiltonian dynamical
systems. The more remarkable aspect of these observations is that—at least for the ALS—a
Cremona symplectification of a fourth- or sixth-order truncated Taylor map works as well
as the ninth-order truncated Taylor map! Now recall that, as remarked upon earlier, using
a ninth-order truncated Taylor map to track electrons in the ALS for relatively short peri-
ods of time yields results that are essentially identical to those of the exact map [39]. The
agreement between this ninth-order truncated Taylor map and the Cremona symplectified
maps indicates that we may use either of the above Cremona symplectifications to study the
long-term dynamics of the ALS.

Prior to building an expensive new storage ring or particle accelerator, such as the proposed
and approved Large Hadron Collider (LHC)®? at CERN, we would like to have some assurance
that it will perform as desired. At present, the long-term stability of particle orbits in such
machines is tested by doing long-term tracking studies using element-by-element tracking
codes.

In element-by-element tracking, one uses kick maps to step particles through individual
elements or parts of individual elements in the ring lattice. A typical lattice requires 10,000
or more kick map applications per turn, and one tries to follow in this fashion the results
of as many as 107 or 10® turns [31]. Such calculations therefore demand extensive amounts
of computer time; indeed each truly long-term tracking calculation may require as much
as several days on a supercomputer or a fast workstation. Hence the current process of
accelerator design is not only expensive, but also tedious and slow.

Now consider the same process using Cremona maps. If a one-turn Cremona map can be
used, then we have seen that a relatively few jolt map applications will suffice to compute
the effect of each turn. Indeed the number of required jolt maps equals the number of points
in the cubature formula associated with the Cremona map—typically 12 to 100—and this
contrasts sharply with the 10, 000 or more kick map applications required to achieve the same

52The LHC will consist of two proton storage rings, each thirty kilometers in circumference, and will use
superconducting magnets cooled to 1.8 K.
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result with element-by-element tracking. We therefore expect that Cremona maps will run
two to three orders of magnitude faster than current methods.

The use of Cremona maps also confers benefits other than improved computational speed.
The current choice of using one or a few kick maps to model the effect of individual elements in
a lattice is often a crude expedient made to minimize the use of computer time. In principle,
however, it is possible to compute a one-turn truncated Taylor map using more accurate
models for all elements in the lattice. From this truncated Taylor map one can construct
a one-turn Cremona map that models the one-turn effects equally well. And this Cremona
map can then be used for long-term tracking studies.

It follows from the above observations that for long-term tracking studies, Cremona maps
have the potential to be not only 100 to 1000 times faster than current methods, but also
more accurate. We therefore expect that the use of Cremona maps will come to play a large
role in future accelerator design and operation.
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APPENDIX A. ELLIPTIC FUNCTIONS

Elliptic functions first arose in the problem of inverting a class of integrals called elliptic
integrals—so-called because the integral giving the arc length of an ellipse belongs to this
class. These integrals have the generic form

/R(u, w)du,

where w? represents either a cubic or a quartic polynomial in u—without repeated roots—
and R(u,w) represents any rational function of u and w. The inversion of such integrals is
entirely analogous [67, 74] to the problem of inverting the integral

 du

(A.1) z(s) /0 Vi
Any student of calculus recognizes that here z(s) = sin~'s and that therefore s = sinz
represents the inverse of the integral in (A.1). Similar integrals lead to the other circular
functions. In the same manner, the inverses of elliptic integrals lead to elliptic functions,
which are therefore, in a sense, generalizations of the circular functions. However, as with
the circular functions there exists no need to mention integrals when introducing elliptic
functions.

In this appendix we review some general properties of elliptic functions and then describe
in particular the Jacobian elliptic functions.

A.1. General Properties of Elliptic Functions

Mathematicians apply the adjective elliptic to any function f(z) defined on the complex
plane which is both meromorphic and doubly-periodic [2, 55, 88]. The meromorphic property
means that at each point in the domain at least one of either the function f or its reciprocal
1/f is analytic. In other words, an elliptic function is analytic everywhere in the finite plane
except for possible poles. The doubly-periodic property means that there exist complex
numbers ©; and Qs whose ratio {1 /Qs is not purely real such that

(A.2) fz4+mQ +ns) = f(2)

for all integer values of m and n. Any number  for which f(z + Q) = f(z) is called a period
of f; and if any such period of f can be written in the form m$Q; 4+ n{ls, for some choice
of integers m and n, then Q; and Qs are called primitive periods of f. The restriction to
non-real values of the ratio 3 /Q2 means that an elliptic function is periodic in two different
directions in the complex plane.

To illustrate the general nature of elliptic functions, Figure A.1 shows a three-dimensional
graph over part of the complex plane of the absolute value of the particular Weierstrass
function p(z) which has primitive periods €; = 6 and Q0 = i4.>® Notice the presence of both
a doubly-periodic structure and singularities. Observe also that evaluating this specific p(2)
at any point in the complex plane is equivalent to evaluating it at the corresponding point
in the rectangle defined by the four vertices {0, 6,6 + i4,i4}. In general, a pair of primitive
periods for an elliptic function need not lie on the real and imaginary axes, respectively—
indeed, the choice of primitive periods is not even unique. In a typical case the four vertices
{0,921,9Q1 + Q2,Qs} define a parallelogram called a fundamental period parallelogram (FPP).
In addition, any simple translation of this parallelogram is called a period parallelogram
(PP), with the adjective “fundamental” reserved for those PPs having one vertex at the
origin. Such PPs tile the plane, and, as with the example shown in Figure A.1, evaluating
an elliptic function f at any point in the complex plane is equivalent to evaluating it at
the corresponding point in any PP. Such corresponding points in two different PPs (see

53Given any two complex numbers €1 and Q2 such that Q1 /Q2 € R, one can always construct a Weierstrass
elliptic function p(z) which has ©1 and Q2 as primitive periods.
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FIGURE A.1. The absolute value of a Weierstrass function p(z) having prim-
itives periods €27 = 6 and Q5 = 4.

Figure A.2) are called congruent. Using more precise language, we call two points z and 2’
congruent if there exist integers m and n such that

2 =z +mO + ny,

a relationship which is sometimes expressed by writing

2=z (mod (1,Q2)).

FIGURE A.2. A lattice of points (+) congruent with respect to the periods
Ql and Qg.

The following set of four theorems, known collectively as Liouville’s theorems, state some
of the remarkable properties of elliptic functions. They rest upon some well-known theo-
rems in complex variable theory and derive simply from the fact that elliptic functions are
meromorphic and doubly-periodic [3, 55, 70, 88].54

54A¢ this point the reader may wish to recall some of the terminology used in the theory of functions of
a complex variable. In particular, suppose a function f(z) has a singularity of some finite order m at the
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Theorem A.1. In a given PP the sum of the residues of an elliptic function at all of its
poles equals zero.

Theorem A.2. If the elliptic function f(z) has no poles in a PP, then f(z) is a constant.
If f(z) is a non-constant elliptic function, then the number of poles in a given PP—taking
multiplicity into account—is finite and at least two. This number is called the order of f.

Note that the order of an elliptic function equals the sum of the orders of each of its poles
in a PP.

Theorem A.3. If f(z) is an elliptic function, then for any complex number w the number
of roots in a PP of the equation f(z) = w—again taking multiplicity into account—equals
the order of f. In other words, an elliptic function of order n takes a given complex value n
times in any PP.

Theorem A.4. Suppose f(z) is an elliptic function of order n having primitive periods Q1
and Q. Suppose further that in a given PP the n roots of the equation f(z) = w for arbitrary
w are denoted {z1,...,2zn} and the n poles of f(z) are denoted {p1,...,pn}. Then

(A.3) Z%zzm(mumm»

According to Theorem A.2, the simplest (i.e., lowest-order) non-constant elliptic functions
are those of order two. These functions comprise two classes: those having one double
pole—with zero residue—in each PP, and those having two simple poles—with residues that
cancel—in each PP [3, 88]. The Weierstrass elliptic function p belongs to the first class and
is the subject of most theoretical investigations on elliptic functions. The Jacobian elliptic
functions, of which there are twelve, belong to the second class and are of primary interest
to us. We shall describe them in the following section.

A simple connection exists between elliptic functions and the more well-known circular and
hyperbolic functions. If one of the periods of an elliptic function approaches infinity, then the
function becomes periodic in just one direction (i.e., simply-periodic), and such a function
must be composed of circular or hyperbolic functions. Note that the circular functions have a
single finite period along the real axis and an infinite period along the imaginary axis, while
the reverse is true for the hyperbolic functions. Because of this limiting behavior, one may
view elliptic functions as interpolating between, or connecting, the circular and hyperbolic
functions.

Before going on to describe in more detail the Jacobian elliptic functions, we state three
more of the many basic and elegant theorems about elliptic functions. The first, Theorem A.5,
follows immediately from the corresponding theorem for simply periodic functions. And the
closely related Theorems A.6 and A.7 follow from Theorems A.2 and A.5 [55, 70].

Theorem A.5. Given any two elliptic functions f(z) and g(z) with identical primitive periods
Q1 and Qq, the following functions also are elliptic functions with (not necessarily primitive)
periods Q1 and Qo

fz+0C), f(2)£9(2), f(2)g(2), [f(2)/9(2), [(2),

location z = a but is otherwise analytic in some domain that contains a. Then we may write f as a Laurent

series in the form b b
m 1
=gt e

+aotai(z—a)+....

The series
m

> bz —a)7*
k=1

containing just the negative powers of z — a is called the principal part of f at a; and, similarly, the series
containing just the zero and positive powers of z — a is called the regular part. In addition, the coefficient by
is called the residue of f at a.
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where C' denotes a fized constant, and the prime denotes differentiation with respect to the
argument z.

Theorem A.6. Any two elliptic functions which have the same primitive periods and the
same poles with identical corresponding principal parts must differ by at most an additive
constant.

Theorem A.7. Consider any two elliptic functions which have the same primitive periods,
the same poles, and the same zeroes. If corresponding poles in the two functions have the
same order and, similarly, corresponding zeroes have the same order, then the two elliptic
functions must differ by at most a multiplicative constant.

A.2. The Jacobian Elliptic Functions

A.2.1. Notation and Defining Properties. As mentioned in the previous section, the Jacobian
elliptic functions have two simple poles with equal but opposite residues in each PP [2]. For
these functions a single number m, called the parameter, determines the primitive periods
Q; and €s; hence the periods cannot be independent. Indeed, they are both related to the
complete elliptic integral of the first kind K = K(m) defined by

(A.4)

! dt /2 do
K(m) = — =
R Tt Bl Ay reverers

and its close cousin K’ = K'(m) = K(1 — m). Figure A.3 shows a graph of these two
functions K and K’ on the interval m = [0, 1]; in general, however, m may take any value in
the complex plane C.

a

m
02 04 os os 1
FIGURE A.3. The complete elliptic integrals K and K’ as functions of the
parameter m.

1.5

Over the years, various notations have been used for the Jacobian elliptic functions. The
modern notation, invented by Glaisher [44], serves as a clever mnemonic device not only for
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FIGURE A.4. A lattice of points for defining the Jacobian elliptic functions.
The dashed outline shows a PP for the function sd u.

defining and remembering the Jacobian elliptic functions, but also for computing with them.
Starting with a fixed value of the parameter m, and therefore fixed values of the complete
elliptic integrals K = K(m) and K’ = K'(m), Glaisher’s notation identifies the letters ‘s’
‘c’, ‘d’, and ‘n’ with respectively the points 0, K, K + ¢K’, and iK' in the complex plane.
This set of points (see Figure A.4) defines a parallelogram (or a rectangle if m € (0,1)) in
the complex plane. Translating this parallelogram by even multiples of K and iK'’ generates
a regular lattice of points which then acts as a reference frame for defining the Jacobian
elliptic functions. Each function is denoted by a pair of (distinct) letters chosen from the set
Jd = {s,c,d,n}, where the first and second letters chosen represent respectively the locations
of simple zeroes and simple poles in the complex plane. (The twelve possible choices of
distinct two-letter combinations chosen from J lead to the twelve Jacobian elliptic functions.)
Furthermore, the step between two nearby points labeled by the function name is a half-
period, while the step between all other pairs of nearby points is a quarter-period. The
function sd, for example, has simple zeroes at all points labeled ‘s’, simple poles at all points
labeled ‘d’, and a PP given by the dashed outline shown in Figure A.4. Table A.1 lists
primitive periods for each of the twelve Jacobian elliptic functions.

TABLE A.1. Primitive periods of the twelve Jacobian elliptic functions.

function periods
sn cd dc ns | 4K 21K’
cn sd nc ds|4K 2(K +iK’)
dn nd sc cs|2K 4K’

Now notice something wonderful: According to the definition given so far, each Jacobian
elliptic function has a definite order and prescribed primitive periods, poles, and zeroes.
Therefore, according to Theorem A.7, these functions are fully defined to within a multiplica-
tive constant! This constant is fixed by assigning the coefficient unity to the leading term
in the expansion of the function about the origin in ascending powers of the argument [2].
Thus, for example, snw has a zero at the origin, so its leading term is u; dsu has a pole at
the origin, so its leading term is 1/u; and cnu has neither a pole nor a zero at the origin, so
its leading term is simply 1. About the origin the functions sn, cn, and dn have the following
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Taylor series expansions [2]:

(A.5a) sn(ulm) = u — (1 4+m)u/3! + (1 + 14m + m?)u® /5! — - - - |
(A.5D) en(ulm) =1 —u?/2! + (1 + dm)u* /4! — - -+
(A.5¢) dn(ulm) =1 —mu?/2!' + m(4+m)u' /4 — - .

One further aspect of Glaisher’s notation deserves mention. Note that because the func-
tions sn and cn share the same poles of the same order, their poles can be neither poles nor
zeroes of the ratio sn/cn. Therefore, the zeroes of the ratio must coincide with the zeroes of
sn, and the poles of the ratio must coincide with the zeroes of cn. Hence it seems plausible
that snu/cnu = scu. Though a proof requires more work, this relation is indeed true; fur-
thermore, it can be generalized. Any three functions having the same second letter—e.g. sn,
cn, and dn—share the same set of poles and are therefore called a co-polar trio. Using any
of the four co-polar trios, one can generate the remaining nine Jacobian elliptic functions by

using the following simple rule: if ‘p’, ‘q’, and ‘r’ represent letters chosen from the set g, then

(A.6) pqu =

pru
qru’

provided we define rru = 1. For example, sdu = snu/dnu, and nsu = nnu/snu = 1/snu.
In a similar fashion one may define the remaining nine Jacobian elliptic functions by starting
with any three functions that share the same set of zeroes—e.g. sc, sd, and sn.

Since the Jacobian elliptic functions really depend on two numbers, an argument and a
parameter, we ought to exhibit both when writing down a function value. However, the
usual practice in the literature displays only the argument, with the parameter implied and
assumed constant. When necessary, the argument and parameter are listed—in that order—
and separated by a vertical stroke: thus sn(u|m) represents snu evaluated with parameter
m.

Another common notation for the Jacobian elliptic functions uses not the parameter but
its square-root, often denoted k and called the modulus. The distinction is usually made by
replacing the vertical stroke with a comma, thus sn(u, k). One sometimes sees the modulus
and argument reversed and separated by a semi-colon, thus sn(k;wu). We shall stick with the
parameter, m = k2, and write sn(u|m) or, when no confusion can arise, simply sn(u) or snu.

A.2.2. Degenerate Cases. When the parameter m takes the values zero or one, the Jacobian
elliptic functions degenerate into simply-periodic (sometimes constant) functions [2, 70]. To
see this, note from Figure A.3 that when m € (0,1) both K and K’ are real, and hence all
of the Jacobian elliptic functions have periods (not necessarily primitive) that align parallel
to the real and imaginary axes (as in Figure A.4). Then note that lim,, o K(m) = 7/2 and
lim,, o K'(m) = oo, and hence as m — 0 all the periods parallel to the real axis shrink
to some finite value, while all the periods parallel to the imaginary axis grow to infinity:
the functions become simply-periodic along the real axis. In a similar fashion as m — 1
the functions become simply-periodic along the imaginary axis. The description just given
suggests that as m — 0 the Jacobian elliptic functions become circular functions, and as
m — 1 they become hyperbolic functions. This is indeed the case, and thus do the Jacobian
elliptic functions form a connection between the circular and hyperbolic functions.

When the parameter m lies in the interval (0, 1), all the Jacobian elliptic functions take
real values (except for possible poles) along the real axis. Figure A.5 shows a graph along
the real axis (with m = 0.6) for each member of the co-polar trio sn, cn, dn. There one sees
a resemblance between the elliptic functions sn and cn and the functions sin and cos. Indeed,
as m — 0 the functions sn and cn approach respectively the circular functions sin and cos.
And as m — 1 the functions sn and cn approach respectively the hyperbolic functions tanh
and sech. Table A.2 lists the degenerate cases for all twelve of the Jacobian elliptic functions.
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-1

F1GURE A.5. The co-polar trio sn, c¢n, dn, with parameter m = 0.6.

TABLE A.2. Degenerate cases of the twelve Jacobian elliptic functions.

function m=0 m=1
sn(ulm) sinu tanhu

cn(ulm) cosu  sechu
dn(u|m 1 sechu
sd(ulm) sinu  sinhu
cd(ulm) cosu 1

nd(u|m 1 coshu

(ufm)
(ufm)
(ufm)
(ufm)
(ufm)
sc(ulm) tanwu sinhu
(ufm)
(ufm)
(ufm)
(ufm)
(ufm)

nc(ulm) secu  coshu
de(ulm)  secu 1

cs(ulm) cotu  cschu
ns(ulm) cscu  cothu
ds(ulm) cscu  cschu

A.2.3. Symmetries, Addition Theorems, and Pythagorean Identities. The Jacobian elliptic
functions satisfy a number of properties familiar to the student of circular and hyperbolic
functions. We list a few of the important ones for the fundamental co-polar trio sn, cn, dn
[2, 69, 70]. First, each Jacobian elliptic function has the same symmetry as its circular or hy-
perbolic sibling. Put another way, those Jacobian elliptic functions with an ‘s’ in their names
are odd with respect to their argument, while all the rest are even. Second, every elliptic
function (Jacobian or otherwise) obeys an algebraic addition theorem [3]. The following three
apply to our co-polar trio:

snu-cnv-dnv+snv-cnu-dnu

AT =

(A.7a) sn(u + v|m) T —— 7
cnu-cnv—snu-dnwu-sno-dnw

A.7b =

( ) cn(u + vlm) T —b 7

(A.7¢) dn(u + v|m) = dnwu-dnv —MSDYU-COU-SNU-CRY

1—msn?u-sn?v
And last, there exist a number of Pythagorean identities relating the different Jacobian elliptic
functions. These include

(A.8a) sn?u+cn?u =1,
(A.8D) dn®u +msnu = 1.
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In both (A.7) and (A.8) all of the Jacobian elliptic functions use the same value of the
parameter m.

A.2.4. Differentiation Formulas. We list in this section several kinds of differentiation formu-
las for the Jacobian elliptic functions: derivatives with respect to the argument, derivatives
with respect to the parameter, and algebraic relations between a given function and its de-
rivative (i.e., a differential equation).

To find the derivative of a Jacobian elliptic function with respect to its argument, one might
take as given the appropriate addition theorem in (A.7) and then use it together with the
known leading-order behavior of the Jacobian elliptic functions. A more fundamental analysis
proceeds by examining the structure of the derivative [70]. For example, the (simple) poles of
the function sn u become double poles of its derivative sn’ u. In addition, Theorem A.4 severely
constrains—indeed fixes—the locations of the zeroes of sn’u. And the known leading-order
behavior of snu determines the leading-order behavior of sn’ u. Theorem A.7 together with
the result of this very sketchy argument leads to the conclusion that sn’u = cnw - dnu. The
above indicated line of reasoning should convey some of the real power of Liouville’s theorems.
We list here the derivatives with respect the argument for the fundamental co-polar trio:

(A.9a) sn’u = cnu-dnu,
(A.9D) en’u=—snu-dnu,
(A.9c¢) dn’u = —msnu-cnu.

Equations (A.6) and (A.8) together with a straightforward application of the chain rule lead
to similarly simple formulas for the remaining nine Jacobian elliptic functions.

One can also differentiate the Jacobian elliptic functions with respect to the parameter
[69]. We list here the results for the fundamental co-polar trio:

(A.10a) 8% sn(ulm) = —% cn - dnu/O sd? v dv,

(A.10Db) 9 en(ulm) = 1 snu-dnu /usd2 vduv,
om 2 0

(A.10c) 9 dn(u|m) = 1 snw - cnu/unc2 vdv.
om 2 0

(The integrals here are well-defined—i.e., path-independent—because, as can be shown, the
principal part of the square of a Jacobian elliptic function at any singular point has zero
residue [69, p. 181].) When we speak of the derivative of an elliptic function, we shall usually
mean the derivative with respect to its argument. When we mean the derivative with respect
to the parameter, we so indicate explicitly.

It turns out that any elliptic function f and its derivative f’ satisfy an algebraic equation.
In other words, there exists some polynomial F' in two variables for which F(f, f') = 0.
Using the derivatives in (A.9) and the Pythagorean identities in (A.8), one can write down
the algebraic relations between the Jacobian elliptic functions and their derivatives. The
following three apply to our co-polar trio:

(A.11a) (sn’u)? = (1 —sn?u)(1 — msn®u),
(A.11b) (en’ uw)? = (1 — en® u)(my + men? u),
(A.1lc) (dn’ w)? = (1 — dn® w)(dn? u — my).

Here the parameter m and its complement m, satisfy the relation

(A.12) m+m; =1.
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A.2.5. Representations in Terms of Integrals. As we mentioned in the introduction to this
appendix, one may also represent the Jacobian elliptic functions as the inverses of certain
elliptic integrals. A simple approach first defines the function sn in this manner and then
uses the Pythagorean identities in (A.8) together with the rule (A.6) to define the remaining
functions.

According to (A.11a), the function sn satisfies the first-order differential equation

(x’)z _ (d:c

2
%) —(1—22)(1 — ma?).
Since sn(0) = 0, we may write

/ ¥ dt
= u7

0 VI-P)1-mP)
with & = sn(u|m). This representation of the elliptic function snu—as the inverse of the
above integral—often serves as its definition [2, 67], but to treat the matter properly requires
a discussion of Riemann surfaces [74, 84].

By making the substitution ¢ = sin in (A.13a), one can obtain another important repre-
sentation for the function sn:

(A.13a)

A.13b ’ df _
o e

with sin ¢ = sn(u|m). Very naturally, based on the Pythagorean identities, we then identify
en(u|m) with cos ¢, and dn(u|m) with /1 — m sin® ¢.

The alert reader will have already noticed the connection between the two integrals in
(A.13) that define the elliptic function snu and the complete elliptic integral in (A.4). The
integral in (A.13b), denoted F(¢|m), is called the incomplete elliptic integral of the first kind;
and (for obvious reasons) this name is given also to the integral in (A.13a). To summarize,
we may express the relationships in (A.13) in the forms

¢ do o
(A14a) u = /O m = F(¢|m) <~ sm(b = sn(u|m),

’ dt in~! = sn(u|m
(A.14b) uz/o T = F(sin™" z|m) < = = sn(u|m).

Using either of the representations in (A.14), one can see the connection between the
Jacobian elliptic functions and their degenerate cases listed in Table A.2: Setting m = 0
transforms the integral in (A.14b) to the form in (A.1), thus confirming that sn(u|0) = sin u.
(Setting m = 0 in (A.14a) produces the same result in a trivial fashion.) Likewise, setting
m = 1 in either (A.14a) or (A.14b), with a bit more algebra, shows that sn(u|l) = tanh u.
Using (A.5), (A.6), and (A.8), one can then confirm the remainder of Table A.2.

For more information on elliptic functions and elliptic integrals, the interested reader will
find an extensive literature. In addition to the references already cited, we mention two more:
The handbook by Byrd and Friedman [14] contains a large table of integrals solved in terms
of elliptic functions. And the book by Spanier and Oldham [83], like Abramowitz and Stegun,
lists many properties of the Jacobian elliptic functions (but their notation differs from that
used here).



APPENDIX B. CONVERTING BETWEEN THE TAYLOR SERIES AND FACTORED-PRODUCT
REPRESENTATIONS

Suppose we know through terms of degree P—1 the Taylor series representation 7, for some
mapping that describes a discrete step along the flow of a Hamiltonian dynamical system.
Using a straightforward procedure, we can convert this map 7, to a new map Mp in the
factored-product form (9.17) in such a way that the series expansion of M pz agrees with 7pz
through terms of degree P — 1 (i.e., so that M ~ T, in the notation introduced in §10.3).
This procedure comes directly from the proof of the factorization theorem, Theorem 9.1,
and has been described in some detail elsewhere [30, 33, 49]. For the sake of completeness,
however, we include here (without proof) a brief description of the procedure for those maps
that have the origin as a fixed point. The restriction to this (only somewhat special) class
of maps means simply that the factored-product representation (9.17) contains no factors of
the form e'f1:.

In the Taylor series representation (3.1), a truncated Taylor map 7p which has the origin
as a fixed point (i.e., which carries the origin onto itself) must have the form

(B.1) ZN = Z Rap 20 + Z Tabe 2p2c + Z Uabed 2b2cza + -+ - .
b be bed

where the terms included go up through degree P—1. Assuming this map arises from the flow
of some Hamiltonian system, we can find the corresponding map M in the factored-product
form

(B2) MP — Reifate:f;;: . e:fp:,
by the following sequence of steps:

(1) The first factor R is the linear Lie transformation whose matrix representation has
as elements the coefficients R, that appear in the linear terms of (B.1).

(2) Define z() by applying R ! to the right-hand side of (B.1). The result will have the
form

21(12) = Zq + Z Z Tabc (Rfl)bb/zb/ (Ril)cc/zc/ + ..
be b'c!
= 2ut 0a(2:2) + O(>2).

Here, and later, we use g,(l;2) to denote a homogeneous polynomial of degree [ in
the variables z; and we use the notation O(>1) to represent terms of degree higher
than [.

(3) Given the Taylor map

zl(ll) = zq + ga(l;2) + O(>1),

extract the homogeneous Lie polynomial f;;1 of degree [ + 1 by the rule
-1
=i a(l; 2) Jabzp,
o= %:g (I; 2) Jabz

where the J,; denote elements of the fundamental symplectic matrix J defined in
(8.2).
(4) Given the Lie polynomial f;;; defined in Step 3, determine z,(llﬂ) by the rule

2 = em im0 = o= ) 4 ga (14 12) + O(> 1+ 1).

The ellipsis here denotes some algebra that must be done in order to obtain the
polynomials g, (I + 1; 2).
(5) Repeat Steps 3 and 4 until fp has been determined.

204
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Doing the conversion the other way—i.e., determining the Taylor map 7, in (B.1) from
a given factored-product map M p of the form (B.2)—requires a straightforward application
of the exponential series (9.3) with the definition (9.1) of the Lie operator :f:. First expand

efriy

through terms of degree P — 1. Then apply and expand in succession the operators e/7-1},
..., €3 At the end, apply the linear Lie transformation R to obtain the final result 7p. We
must warn the casual reader, however, that other operations, such as tracking with the map
in (B.2), pose considerable subtleties concerning the order in which to apply the different Lie
transformations. See [30, Ch. 6] for a thorough discussion.



APPENDIX C. CONVERTING BETWEEN THE FACTORED-PRODUCT AND JOLT
REPRESENTATIONS

This appendix describes the procedures mentioned in §10.3 for converting the non-linear
part of a symplectic map back and forth between the factored-product representation

(9.20) Np = el elr
and the jolt representation
(10.13) Tp=Le9 L7 Lye? L3

These procedures have been described elsewhere in some detail [31, 51]; we therefore give here
simply a description and refer the reader to the cited references for more complete discussions
and proofs.

Converting a Cremona map Jp in the jolt representation (10.13) to an equivalent map Np
in the factored-product representation (9.20)°% can be done in at least two different ways.
One method makes use of (10.5) and the Baker-Campbell-Hausdorff theorem®® [20, 28, 30]
to combine, separate, and rearrange the factors in Jp in order to obtain the equivalent map
Np. A second method (which is less efficient but easier to program to high order) uses first
(9.1) and (9.3) to expand Jpz into a Taylor map, and then the method given in Appendix B
to convert the result to the desired form Nop.

Given a map Np in the factored-product representation (9.20) and an appropriate set of
N linear symplectic transformations £, we can find the corresponding map Jp in the jolt
representation (10.13) by the following sequence of steps:

(1) Define hs = f3, and obtain its jolt decomposition (11.2), using (11.11) to determine

: (3)
the jolt strengths ajy -

(2) Define the kicks ¢7(3), j € {1,2,..., N}, by (c¢f. (10.14))

1 M (3,n)
i(3) = )3
g ( ) NM(3,”) ; ajk Qk

Then the non-linear Cremona map J5 given by
N .
jg _ H Eje:g](3):£j—l
j=1

agrees with N at least for the factor e'/3:.
(3) In general, we shall obtain a Cremona map

N
I (L) —
jL = Hﬁje'g (L)'Ej !
j=1
which agrees with Np for all factors up through e'/:. Convert this map 7, to
factored-product form to obtain

jL _ e:f3:e:f4: L e:fL:e:fL+1:'

In other words, carry out the conversion far enough to determine the Lie polynomial
fL+17 which will generally differ from the Lie polynomial fr,; that appears in the
initial map Np.

(4) Define the homogeneous dynamical polynomial

hpi1 = fre1 — fo41,

and obtain its jolt decomposition to determine the jolt strengths agl,:rl).

55Here we mean equivalent in the sense that JIp > Np, cf. §10.3.
56The names regularly appear in other orders: e.g. Campbell-Baker-Hausdorff.
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(5) Define the kicks g/(L + 1) by (cf. (10.14))

1 E 1 W ® A0

; ! l

9](L+1):NZ M) Z a;; Q)
1=3 ’ k=1

(6) Repeat Steps 3-6 until the kicks g/ = g’ (P) have been determined.
If the £; come from a cubature formula with unequal weights wj, then replace all occurrences
of % by w;—not only in the formulas above, but also in the formula for the Gram matrix
elements T'(1),s, which are needed for computing the jolt strengths ag-lk). (See the introduction
to §16.1 and the first paragraph of §16.2.5 or §16.3.4.)



APPENDIX D. ACTION OF ¢'/2* FOR ONE DEGREE-OF-FREEDOM SYSTEMS

Consider the most general fy for a dynamical system having one degree of freedom:

(D.1) fa= —%(VQQ + 2aqp + Bp°),

where a, 3, and 7 denote arbitrary coefficients. Evaluating the action of ef2' on any point
in phase space is a straightforward exercise. First note that

1
faiq = =5 [2aqp + Bp*,q] = aq + Bp,
and

1
farp= —§[vq2 + 2agp, p] = —yq — ap,

from which follows
:fo:® ¢ = :for(aq + Bp) = alag + Bp) + B(—vq — ap) = —(By — a?)q,

and

foi? p = ifo:(—vq — ap) = —y(agq + Bp) — a(—yq — ap) = —(By — o?)p.
Let us define the quantity
(D.2) w2 = By — a?.

Then we obtain
2k (4 E 2k [4
:fo: =(—-1)"w ,
2 (p> = (p)

2k (D) gk 2k aq + Bp
e (p> =1 (—vq—ap>'

Using these last two results, we may sum the exponential series:

()= Zatns () Sark o ()

and

k=0
_oo_ p w2k (q) 00_ kﬂl(aq—l—ﬁp)
_kZ:O( b (2k)! \p +k2:0( 2 2k +1)!w \—vqg—ap

=ess (7) 5 (2 5) )
P w \— —a)\p/’

Therefore, based on our convention (9.12) for representing linear Lie transformations as ma-
trices, we obtain the following matrix representation for the action of ei/2::

f2r (4 _ COSuJ—l—'aSi% 5% q
(D.3) e <p> < Y e ot ) (4):

sin w
w

Note that w appears only as the argument of even functions: cosw and . As a consequence,

the ambiguity in the sign of w as given by (D.2) has no effect.
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APPENDIX E. PROPERTIES OF THE MATRIX d(W)

In §13.1 we considered symplectic matrices W having the special property that their cor-

responding linear symplectic transformations £(W') mapped the gx, and hence also the Q,(cl)
only among themselves. Thus we wrote (here dropping the subscript j on the W)

(13.6) L)QY =3 dW),Qp.
k/

This equation defines a real M(l,n) x M(l,n) matrix d(W), and in this section we derive
several of its properties.
We first prove a lemma about £(W) and then prove that d(WW) is invertible.

Lemma E.1. If the linear symplectic transformation L(W') maps the g only among them-
selves, then so also does L(W)~L.

Proof. As in §9 we use coordinates (21,...,2n, Zn+1,--+,22n) = (@1« Gn;P1s---,Pn) tO
label points in phase space. With this ordering of coordinates, our convention (9.12) for
representing Lie transformations as matrices implies that the linear symplectic matrix W
must have the n x n block form

(E.1) W= <é g)

where the upper-right-hand block is an n x n zero matrix. Because W is symplectic, and
hence non-singular, it follows that the diagonal blocks, both A and D, are also non-singular.
(If, for example, D were not invertible, then it would necessarily have linearly dependent
columns. But then W also would have linearly dependent columns, and hence W would not
be invertible.) One may then easily verify that the inverse of W is

At 0

-1 _

W= (pleas ph):

which has the same form as (E.1). It therefore follows from this result and (9.16) that
L(W)~! = £(W~1) maps the g, only among themselves. [ ]

Theorem E.1. The matriz d(W) defined by (13.6) has the inverse d(W=1).

Proof. Since L£(W) maps the ¢ only among themselves, it follows from Lemma E.1 that
L(W=1) also maps the g, and hence also the Q;ﬂl), only among themselves. Expanding
LW1QY as in (13.6), we write

(E.2) LV HQY = dW ) Q.

k//
Putting together (9.16), (13.6), and (E.2), we find that

P = L) TLMNQY = LV HLWQY = LW D d(W)yQy)

= 3 dW)pdV >k,,k,czgz:z(zd Do d(V ) ) Q1

k' k! k" ’

- Z )k”ka”

k!

As the Q,(Cl) form an orthonormal basis for the subspace of functions of the ¢’s alone, it follows
from this result that

(dW=H)d(W)) o, Zd )k d(W )k = Oprr.
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In other words,
(E.3) [dW)]~" = d(W ).
|

Note that we may use (13.6) together with the inner product (10.9) to write the matrix
elements of d(W) as

(E.4) W)y, = (Q)), LOV)QY) .

Let us now examine what happens when we consider transformations taken from the U(n)
subgroup of Sp(2n,R). We prove another lemma and then two more theorems.

Lemma E.2. Let L(M(u)) denote the linear symplectic transformation corresponding to the
matric M (u) defined in (13.11). Then

(E.5) L(M(u)" = L(M(u)™" = L(M(uT)).

Proof. According to §13.2, M (u) belongs to the U(n) subgroup of Sp(2n,R), and hence, by
(10.11) and (9.16),

LM ()" = £(M(u)™ = L£(M(u)").
But from (13.12) and the fact that u € U(n) we obtain
M)t = M@u™t) = M.
The result (E.5) then follows. |
Note that if we abbreviate £(M (u)) by L(u), as in §13.3, (E.5) becomes
(E.6) L)' =L@ =Lwh)=Lw™).
We shall use this notation in proving the following two theorems.

Theorem E.2. Consider a matriz M (u) defined by (13.11), and suppose that u = r denotes
a real orthogonal matriz. Let us agree in this case to denote d(M(r)) by d(r). Then

(E?) d(Tl)d(TQ) = d(’I”QTl).

Proof. Note that because the matrix M (r) has the form given in (13.22), the transformation
L(r) does indeed map the ¢; only among themselves. It therefore makes sense to write
d(M(r)) in the first place. Now consider the matrix element in row k", column k’. Using
(E.4) and (E.6), we find that

(d(r)d(r2)) oy = S d(r) () = S (Q, LR WQY, £(r2) QL)
k k

= > (e’ o) (@ £ir)Q)
k

=3 LT, QY £)Q)
k

(X Jo) (@) |eoaal).

Since both E(rl_l)Qg,), and L(TQ)Q,E},) are linear combinations of the Q;ﬂl) (¢f. Lemma E.1), it
follows that for this purpose the quantity

>ola) @)l
k

= (coiHay)
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is equivalent to the identity operator. Using (E.6), (9.15), and (E.4), we conclude that
(Ar1)d(r2)) 0 = (L0T QU L2)QR) = (@40, L) L(r2)QLY)
=(QY, 5(7“27“1)@;(@1«» = d(rar1) gk
The result (E.7) then follows. |
Theorem E.3. In the notation of the previous theorem
(E.8) d(7) = d(r1) = d(r).
Proof. As r denotes an orthogonal matrix, # = 7~1. Using (E.4) and (E.6), we find that
(7)o, = A ), = (QY . LETHQY) = (£L(nQY, QL) .

Since d(r) is a real matrix, we may go on to write

(£, Q) = (@ LQY) = dr)s = (A1),
The result (E.8) then follows. [ ]



APPENDIX F. THE MODIFIED IWASAWA FACTORIZATION

Suppose M denotes a real symplectic matrix written in the n x n block form of (13.10):
M = (A B). Then consider the modified matrix M = JMJ~!, where J denotes the matrix
of (8.2). As J is symplectic, so then is M. It can be shown that for any symplectic matrix
M € Sp(2n,R) one may write a partial Iwasawa factorization [30]:

_ Y1/2 0 I Y*l/Qnyl/Q
y1/2 XY71/2

= ( 0 Y71/2 )M(U’)
Here M (u) denotes a matrix of the form (13.11), and X and Y denote respectively the real
and imaginary parts of the complex matrix

Z=X+iY = —(C —iD)(A—iB)™ "

We note (without proof) that the matrices X, Y, and Z are symmetric; the matrix Y is
positive definite; and, hence, both Y1/2 and Y ~1/2 are well-defined.

Let us now recover the matrix M from M:
Y1/2 Xy—l/2

0 Y—1/2

(F.1)

(F.2) M=J'MJ=J" ( ) JJ M (u)J.

As one may easily verify, J=! = J. Hence the first three factors of (F.2) become
0 -1\ [Y¥2 Xy~-1/? 0 I
I 0 0 Y Y2 )\-I 0
0 I\ [-XYy~-Y2 yl/? y—1/2 0
“\7r o)\ vz o )T \—xy-v2 yu2)
And the last three factors become
0 -1 Re(u) Im(u) 0 1
I 0)\—Im(u) Re(uw))\-I 0
(0 =TI\ [—Im(u) Re(u)\ _ Re(u) Im(u)) M(u)
“\7 0)\—Re(w) —-Im(u))~ \=Im(u) Re(w)) '
We may therefore express any matrix M € Sp(2n,R) in the form
F 0
(F3) = (g )

with u unitary, G = —XY /2 and F = Y ~1/2 a real, symmetric, positive definite matrix.
We have already noted in §13.2 that M (u) represents a symplectic matrix. Because the matrix
M is symplectic—by assumption—the group property of Sp(2n, R) implies that the first factor
in (F.3) must also be symplectic. It then follows that (F.3) represents a factorization of the
real symplectic matrix M into a product of two symplectic matrices. We call this form (F.3)
a modified Iwasawa factorization of M.



APPENDIX G. THE COSET SPACE U(3)/S0(3)

Theorem G.1. Every unitary matriz uw € U(3) has a representation of the form
(G.1) u = re™,
where r € SO(3,R), and S is real symmetric.

Proof. Given any matrix u € U(3), define the new matrix
w = Uy,
and note that w is both symmetric and unitary. Then, as Gantmacher shows [43, Vol. ILp. 5],
there exists a real symmetric (but not necessarily unique) matrix S” such that
w = e
To see the lack of uniqueness, consider the real symmetric matrix
S =5 +knl,

where I denotes the 3 x 3 identity matrix, and k& € {0,1}. Observe that S works as well as
S’
28 _ ji28'vi2kml _ 28’ izknl _ ,i28' jizkn _ 28" _

e w.

Now examine the determinants of w and w. Note first that
det w = det(@u) = (detu)?,
and hence o
detu = €' 5,
But since
TrS =Tr S + 3k,
it follows that one may choose k € {0,1} so as to ensure that

. . ;o
ezTrS _ ezTrS eszTr — det u.

Upon making this choice for k, define the matrix r by the relation (G.1):
r=wue ",
To complete the proof, we need to show only that r € SO(3,R). Since

Fr = e—zsﬂue—zs _ e—zswe—zS — e—zSezQSe—zS — I,

and

detr = det(u) det(e ™) = e/ eI =1,
we conclude that r € SO(3). The fact that r is both unitary and orthogonal then shows that
indeed r € SO(3,R). |

The alert reader will note that Theorem G.1 generalizes, in a reasonably obvious manner,
so as to cover all odd-dimensional unitary matrices.



APPENDIX H. Mathematica PACKAGES

This appendix contains all of the Mathematica packages referred to in the main text or
used by the Mathematica notebooks listed in Appendix I. They are arranged as follows, in
alphabetical order:

AnhOsc.m
AnhOscTrack.m
AngMomD .m
ColonOps.m
CRconvert.m
ListManipulation.m
PBgrad.m
Polynomial.m
sp4.m

sp6.m
sp6tools.m
SU2phi.m
SU3.m
SU3wts.m
USp.m
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(* AnhQOsc.m

This package contains functions for evaluating the analytic
solution to the anharmonic oscillator in a complex phase space.
Written by D. T. Abell. Last modified 22 May 1992 *)

BeginPackage ["AnhOsc‘"]

AnhOsc::usage = "AnhOsc.m is a package of functions for
evaluating the complex anharmonic oscillator as a function of
time. The Hamiltonian is p~2/2 + q°2/2 - q"4/4, and all
calculations use the Jacobian elliptic functions."

Ham: :usage = "Ham[q,p] evaluates the Hamiltonian
p°2/2 + q°2/2 - q"4/4 for the anharmonic oscillator."

qf::usage = "qf[qin,pin,t] evaluates qf(t) for the anharmonic
oscillator, using the initial conditions (qin,pin).

qf [qin,pin,ti,tf,dt] evaluates qf(t) at times from ti to tf with
spacing dt."

pf::usage = "pflqin,pin,t] evaluates pf(t) for the anharmonic
oscillator, using the initial conditions (qin,pin).
pflgin,pin,ti,tf,dt] evaluates pf(t) at times from ti to tf with
spacing dt."

qfpf::usage = "qfpflqin,pin,t] evaluates {qf(t),pf(t)} for the

anharmonic oscillator, using the initial conditions (qin,pin).

qfpf [qin,pin,ti,tf,dt] evaluates {qf (t),pf(t)} at times from ti
to tf with spacing dt."

qfpfLIN: :usage = "qfpfLIN[qin,pin,t] evaluates the linear part of
{qf (t) ,pf(t)} for the anharmonic oscillator, using the initial
conditions (qin,pin). This results in a simple rotation in
phase space."

qfpfNL: :usage = "qfpfNL[qin,pin,t] evaluates the non-linear part
of {qf(t),pf(t)} for the anharmonic oscillator, using the initial
conditions (qin,pin)."

Begin[" ‘Private‘"]

EPS = 10.7-15

RT2 = Sqrt[2.]

Ham[q_,p_] = p~2/2 + q"2/2 - q~4/4
qf [qo_,po_,t_] :=

Module [{nrgy,sgn,tanh,qmxSQ,wn, kovqnxSQ,kSQ,arg,sn,cn,dn},
nrgy = N[Ham[qo,pol];
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Which[Abs [nrgy] <=EPS,
Which[qo==0, 0.,
po==0, N[qo Sec[t]],
True, N[qo~2/(qo Cos[t] - po Sin[t1)]],
Abs [nrgy-0.25]<=EPS,
Which[qo==0, N[RT2 po Tanh[t/RT2]],
po==0, N[qo],
True, sgn = (1-qo~2)/(RT2 po);
tanh = Tanh[t/RT2];
N[(qo+sgn tanh)/(1+sgn qo tanh)]],
True,
qmxSQ = 1-Sqrt[1-4 nrgyl;
wm = Sqrt[2. nrgy/qmxSQ];
kovgmxSQ = qmxSQ/(4 nrgy);
kSQ = kovgmxSQ qmxSQ;
arg = N[wm t];

sn = JacobiSN[arg,kSQ];
cn = JacobiCN[arg,kSQ];
dn = JacobiDN[arg,kSQ];

N[(qo cn dn+(po/wm) sn)/(1-kovgmxSQ(qo sn)~2)]1]1]

qf [qo_,po_,ti_,tf_,dt_] :=
Module [{nrgy,sgn,tanh,qmxSQ,wm, kovqmxSQ,kSQ,arg,sn,cn,dn},
nrgy = N[Ham[qo,pol];
Which[Abs [nrgyl <=EPS,
Which[qo==0, Table[O0.,{t,ti,tf,dt}],
po==0, N[Tablelqo Sec[t],{t,ti,tf,dt}]],
True, N[Table[qo~2/(go Cos[t]-po Sin[t]),
{t,ti,tf,dt}11],
Abs [nrgy-0.25]1<=EPS,
Which[qo==0, N[RT2 po Table[Tanh[t/RT2],
{t,ti,tf,dt}1],
po==0, N[Table[qo,{t,ti,tf,dt}]],
True, sgn = (1-qo~2)/(RT2 po);
tanh = Table[Tanh[t/RT2],
{t,ti,tf,dt}];
N[(qo+sgn tanh)/(1+sgn qo tanh)]],
True,
qmxSQ = 1-Sqrt[1-4 nrgyl;
wm = Sqrt[2. nrgy/qmxSQ];
kovgmxSQ = qmxSQ/(4 nrgy);
kSQ = kovgmxSQ qmxSQ;

arg = N[Table[wm t,{t,ti,tf,dt}]];
sn = JacobiSN[#,kSQl& /@ arg;
cn = JacobiCN[#,kSQl& /@ arg;
dn = JacobiDN[#,kSQl& /@ arg;

N[(qo cn dn+(po/wm)sn)/(1-kovqmxSQ(qo sn)~2)]1]1]

pflqo_,po_,t_] :=
Module [{nrgy,cos,sin,sgn,tanh,qmxSQ,wn, kovgmxSQ,kSQ,arg,
sn,cn,dn,snSQ,dneoscSQ, pnum},
nrgy = N[Ham[qo,pol];
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Which[Abs [nrgy] <=EPS,
Which[qo==0, 0.,

po==0, N[qo Sec[t] Tan[t]],

True, cos = Cos[t];
sin = Sin[t];

N[go~2 (po cos+qo sin)/
(gqo cos-po sin)"2]],
Abs [nrgy-0.25]1<=EPS,
Which[qo==0, N[po Sech[t/RT2]"2],

po==0, O.,

True, sgn = (1-qo~2)/(RT2 po);
tanh = Tanh[t/RT2];
N[po(1-tanh~2)/(1+sgn qo tanh)~2])],

True,
qmxSQ = 1-Sqrt[1-4 nrgyl;
wm = Sqrt[2. nrgy/qmxSQ];
kovgmxSQ = qmxSQ/(4 nrgy) ;
kSQ = kovgmxSQ qmxSQ;

arg = N[wm t];
sn = JacobiSN[arg,kSQ];
cn = JacobiCN[arg,kSQ];

dn = JacobiDN[arg,kSQ];

snSQ = sn"2;

denoscSQ = kovgmxSQ gqo~2 snSQ;

poum = (po cn dn-(1+kSQ)wm qo sn) (1+dneoscSQ);
pnum += 2(kSQ snSQ+kovgmxSQ qo~2)wm qo sn;

N [pnum/ (1-dneoscSQ) “2]]1]

pflqo_,po_,ti_,tf_,dt_] :=
Module [{nrgy,cos,sin,sgn,tanh,qmxSQ,wn,kovqmxSQ,ksSQ,arg,
sn,cn,dn,snSQ,kqoqmSQ,dneoscSQ, wmgosn, pnum},
nrgy = N[Ham[qo,pol];
Which[Abs [nrgy] <=EPS,
Which[qo==0, Table[O0.,{t,ti,tf,dt}],
po==0, N[Table[qo Sec[t] Tan[t],
{t,ti,tf,dt}1],
True, cos = Table[Cos[t],{t,ti,tf,dt}];
sin = Table[Sin[t],{t,ti,tf,dt}];
N[go~2 (po cos+qo sin)/
(gqo cos-po sin)“~2]],

Abs [nrgy-0.25]1<=EPS,
Which[qo==0, N[po Table[Sech[t/RT2]"2,
{t,ti,tf,dt}1],
po==0, Table[O.,{t,ti,tf,dt}],
True, sgn = (1-qo~2)/(RT2 po);
tanh = Table[Tanh[t/RT2],
{t,ti,tf,dt}];
N[po(1-tanh~2)/(1+sgn qo tanh)~2]],
True,
qmxSQ = 1-Sqrt[1-4 nrgyl;
wm = Sqrt[2. nrgy/qmxSQ];
kovgmxSQ = qmxSQ/(4 nrgy);
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kSQ = kovgmxSQ qmxSQ;

arg = N[Table[wm t,{t,ti,tf,dt}]];
sn = JacobiSN[#,kSQl& /@ arg;

cn = JacobiCN[#,kSQl& /@ arg;

dn = JacobiDN[#,kSQl& /@ arg;

snSQ = sn"2;

kqogmSQ = kovqmxSQ qo~2;

denoscSQ = kqogmSQ snSQ;

Wmgosn = wm qo sn;

paoun = (po cn dn-(1+kSQ)wmqosn) (1+denoscSQ) ;
poum += 2(kSQ snSQ+kqoqmSQ)wmgosn;
N [pnum/ (1-denoscSQ) “2]]1]

qfpflqo_,po_,t_] :=
Module [{nrgy,cos,sin,den,tanh,sgn,qmxSQ,wn, kovqnxSQ,ksQ, arg,
sn,cn,dn, cndn, kqogmSQ,dneoscSQ,wmgosn, pnum},
nrgy = N[Ham[qo,pol];
Which[Abs [nrgy] <=EPS,
Which[qo==0, {0.,0.},
po==0, N[qo Sec[t] {1,Tan[t]}],
True, cos = Cos[t];
sin = Sin[t];
den = qo cos-po sin;
N[qo~2{1/den, (po cos+qo sin)/den~2}]],
Abs [nrgy-0.25]<=EPS,
Which[qo==0, tanh = Tanh[t/RT2];
N[po{RT2 tanh, (1-tanh~2)}],
po==0, N[{qo,0.}],
True, sgn = (1-qo~2)/(RT2 po);
tanh = Tanh[t/RT2];
den = (1+sgn qo tanh);
N[{(qo+sgn tanh)/den,
po(1-tanh~2)/den~2}1],

True,
qmxSQ = 1-Sqrt[1-4 nrgyl;
wm = Sqrt[2. nrgy/qmxSQ];
kovgmxSQ = gqmxSQ/(4 nrgy);
kSQ = kovgmxSQ qmxSQ;
arg = N[wm t];

sn = JacobiSN[arg,kSQ];
cn = JacobiCN[arg,kSQ];
dn = JacobiDN[arg,kSQ];

cndn = cn dn;

snSQ = sn”2;

kqogmSQ = kovgmxSQ qo~2;

denoscSQ = kqogmSQ snSQ;

wmgosn = wWm qo Sn;

pnoum = (po cndn-(1+kSQ)wmgosn) (1+denoscSQ) ;
poum += 2(kSQ snSQ+kqoqmSQ)wmgosn;

den = 1-denoscSQ;

N[{(qgo cndn+(po/wm)sn)/den,pnum/den~2}1]]
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qfpf[qo_,po_,ti_,tf_,dt_] :=
Module [{nrgy,cos,sin,den,tanh, sgn,qnxSQ,wn, kovguxsSQ,kSQ,arg,
sn,cn,dn, cndn, kqogqmSQ,dneoscSQ,wmgosn, pnum},
nrgy = N[Ham[qo,pol];
Which[Abs [nrgyl <=EPS,
Which[qo==0, Table[{0.,0.},{t,ti,tf,dt}],
po==0, N[Table[qo Sec[t] {1,Tan([t]},
{t,ti,tf,dt}1],

True, cos Table[Cos[t],{t,ti,tf,dt}];
sin = Table[Sin[t],{t,ti,tf,dt}];
den = qo cos-po sin;

N[qo~2{1/den, (po cos+qo sin)/den~2}]],
Abs [nrgy-0.25] <=EPS,
Which[qo==0, tanh = Table[Tanh[t/RT2],
{t,ti,tf,dt}];
N[po{RT2 tanh, (1-tanh~2)}],

po==0, N[Table[{qo,0.},{t,ti,tf,dt}]1],

True, sgn = (1-qo~2)/(RT2 po);
tanh = Table[Tanh[t/RT2],

{t,ti,tf,dt}];
den = (1+sgn qo tanh);
N[{(qo+sgn tanh)/den,

po(1-tanh~2)/den"2}1)1,

True,

qmxSQ = 1-Sqrt[1-4 nrgyl;

wm = Sqrt[2. nrgy/qmxSQ];

kovgmxSQ = qmxSQ/ (4 nrgy) ;

kSQ = kovgmxSQ qmxSQ;

arg = N[Table[wm t,{t,ti,tf,dt}]];

sn = JacobiSN[#,kSQl& /@ arg;

cn = JacobiCN[#,kSQl& /@ arg;

dn = JacobiDN[#,kSQl& /@ arg;

cndn = cn dn;

snSQ = sn"2;

kqogmSQ = kovgmxSQ qo~2;

denoscSQ = kqogmSQ snSQ;

Wmgosn = wm qo sn;

poum = (po cndn-(1+kSQ)wmgosn) (1+denoscSQ) ;

poum += 2(kSQ snSQ+kqoqmSQ)wmgosn;

den = 1-denoscSQ;

Transpose [N[{(qo cndn+(po/wm)sn)/den,
pnum/den~2}1111]

qfpfLIN[qo_,po_,t_] :=
Module[{cos,sin},
cos = Cos[t];
sin = Sin[t];
{cos qo + sin po, -sin qo + cos pol}]
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qfpfNL[qgo_,po_,t_] :=
Module[{gint,pint},
{qint,pint} = qfpfLIN[qo,po,-t];
qfpf [qint,pint,t]]
End[]
Protect [Ham,qf ,pf,qfpf,qfpfLIN,qfpfNL]

EndPackage[]
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‘ AnhOscTrack.m ‘

(* AnhOscTrack.m

This package contains a set of functions for tracking the
poles of the anharmonic oscillator in the complex phase space.
Written by D. T. Abell. Last modified 15 July 1992 %)

BeginPackage ["AnhOscTrack‘", "AnhOsc‘", "CRconvert‘"]

AnhOscTrack: :usage =

"AnhOscTrack.m is a package for tracking the complex
singularities of the anharmonic oscillator governed by the
Hamiltonian H = (p~2+q~2)/2 - q"4/4."

qfDenom: :usage =
"qfDenom[q,p,t] evaluates the denominator of the expression
q(t) for the anharmonic oscillator."

gContraction: :usage =

"qContraction[q,p,t] contracts the point (q,p) towards a zero
of the denominator of q(t). The variable q is contracted while
p is held fixed."

pContraction: :usage =

"pContraction[q,p,t] contracts the point (q,p) towards a zero
of the denominator of q(t). The variable p is contracted while
q is held fixed."

contractQ: :usage =

"contractQ[q,p,t,maxreps] repeatedly applies the gContraction
map to find a zero of the denominator of q(t), but does so no
more than maxreps times."

contractP: :usage =

"contractP[q,p,t,maxreps] repeatedly applies the pContraction
map to find a zero of the denominator of q(t), but does so no
more than maxreps times."

TrackZeroQArcP: :usage =
"TrackZeroArcP[gstart,absP,thetastart,dtheta,len,t] tracks a
g-zero of the denominator of q(t) as p.init varies along the arc

|p.init| = constant."

TrackZeroPArc(Q: :usage =
"TrackZeroArcQ[pstart,absQ,thetastart,dtheta,len,t] tracks a
p-zero of the denominator of q(t) as qg.init varies along the arc

|q.init| = constant."

TrackZeroQRadP: :usage =

"TrackZeroQRadP [gstart,theta,rpstart,drp,len,t] tracks a
g-zero of the denominator of q(t) along the line Arg(p.init) =
constant."
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TrackZeroPRadQ: :usage =

"TrackZeroPRadQ[pstart,theta,rqstart,drq,len,t] tracks a
p-zero of the denominator of q(t) along the line Arg(q.init) =
constant."

TrackNearestQZero: :usage =

"TrackNearestQZero[gstart,pstart,drp,len,t] tracks a particular
zero (both q and p) of the denominator of q(t) as q.init and
p.-init vary along a path chosen to keep |q.init| a min for each
value of |p.init]."

TrackNearestPZero: :usage =

"TrackNearestPZero[gstart,pstart,drq,len,t] tracks a particular
zero (both q and p) of the denominator of q(t) as q.init and
p-init vary along a path chosen to keep |p.init| a min for each
value of |q.init]."

DeltaEmax: :usage =
"DeltaEmax is an option for all of the functions in the
AnhOscTrack.m package except for gfDenom. It determines the
range of energies used to compute the energy derivative in the
contraction map. The default value is DeltaEmax -> 10.7-4."

Options[AnhOscTrack] = {DeltaEmax -> 10.7-4}

Begin[" ‘Private‘"]

EPS 10.7-15

RT2 = Sqrt[2.]

TINY = 10.7-9

(* Der::usage =
"Der [func,xo,h] finds numerically the first-order
central-difference derivative of func at xo." *)

Der [f_Function,x_,h_] := (f[x+h]-f[x-h])/(2 h)

(* denomF: :usage =

"denomF [energy, time] evaluates the function (k/qmax)~2 sn”~2
that appears in the denominator of the expression q(t) for the
anharmonic oscillator." *)

denomF[e_,t_] :=
Module [{nrg, qmxSQ, kovqmxSQ,kSQ,arg,sn},
nrg = N[el;
Which[Abs [nrg]<=EPS, N[Sin[t]~2/2],
Abs [nrg-0.25]<=EPS, N[Tanh[t/RT2]"2],
True,
gmxSQ = 1.-Sqrt[1.-4. nrgl;



§H APPENDICES 223

kovgmxSQ = qmxSQ/(4. nrg);

kSQ = kovgmxSQ qmxSQ;

arg = N[t] Sqrt[2. nrg/qmxSQ];
sn = JacobiSN[arg,kSQ];
kovgmxSQ sn~2]]

gfDenom[qo_,po_,t_] := N[1 - (qo"2) denomF[Ham[qo,po],t]]

gContractionlq_,p_,t_,opts___Rule] :=
Module[{deltaE,nrg,eps,fprime,fE,qsSQ},
deltaE = DeltaEmax /. {opts} /. Options[AnhOscTrack];
nrg = N[Ham[q,pl];
eps = deltaE Max[1.,Abs[nrgl];
fprime = Der[denomF [#,t]&,nrg,eps];
fE = denonF [nrg,t];
asqQ = q"°2;
g+(1-9SQ fE)/(q 9SQ(1-gSQ)fprime + 2 q fE)]

pContraction[q_,p_,t_,opts___Rule] :=
Module[{deltaE,nrg,eps,fprime,fE,qSQ},
deltaE = DeltaEmax /. {opts} /. Options[AnhOscTrack];
nrg = N[Ham[q,pl];
eps = deltaE Max[1.,Abs[nrgl];
fprime = Der[denomF [#,t]&,nrg,eps];
fE = denonF [nrg,t];
asqQ = q"2;
p+(1-9SQ fE)/(qSQ p fprime)]

contractQ[q_,p_,t_,maxreps_,opts___Rule] :=
FixedPoint [qContraction[#,p,t,opts]&,q,maxreps,
SameTest->(Abs [#1-#2] <TINY&)]

contractP[q_,p_,t_,maxreps_,opts___Rule] :=
FixedPoint [pContraction[q,#,t,opts]&,p,maxreps,
SameTest->(Abs [#1-#2]<TINY&)]

TrackZeroQArcP[gstart_,absP_,thetastart_,dtheta_,len_,t_,
opts___Rule] :=
Module [{deltaE,ang=thetastart,mom,qroot,rtlist,nrg,del,df,

qsSQ,deltaQ,qtry},

deltaE = DeltaEmax /. {opts} /. Options[AnhOscTrack];

mom = N[P2C[{absP,ang}]];

groot = contractQ[gstart,mom,t,50];

rtlist = {qroot};

Do [nrg = Ham[qroot,mom] ;
del = deltaE Max[1.,Abs[nrgl];
df = Der[denomF [#,t]&,nrg,del];
qSQ = qroot~2;
deltaQ = -I dtheta qroot mom~2 df/

(gSQ(1.-gSQ)df + 2. denonmF[nrg,t]);

qtry = qroot + deltaQ;
ang += dtheta;
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mom = N[P2C[{absP,angl}]];

groot = contractQ[qtry,mom,t,50];

AppendTo[rtlist,qroot], {len}];
rtlist]

TrackZeroPArcQ[pstart_,absQ_,thetastart_,dtheta_,len_,t_,
opts___Rule] :=
Module [{deltaE,ang=thetastart,pos,proot,rtlist,nrg,del,df,
qsSQ,deltaP,ptry},
deltaE = DeltaEmax /. {opts} /. Options[AnhOscTrack];
pos = N[P2C[{absQ,ang}]];
proot = contractP[pos,pstart,t,50];
rtlist = {proot};
Do[nrg = Ham[pos,proot];
del = deltaE Max[1.,Abs[nrgl];
df = Der[denomF [#,t]&,nrg,del];
qSQ = pos~2;
deltaP = -I dtheta(qSQ(1.-qSQ)df + 2. denomF[nrg,t])/
(proot df);
ptry = proot+deltaP;
ang += dtheta;
pos = N[P2C[{absQ,ang}]];
proot = contractP[pos,ptry,t,50];
AppendTo [rtlist,proot], {len}];
rtlist]

TrackZeroQRadP[gstart_,theta_,rpstart_,drp_,len_,t_,
opts___Rule] := Module[{deltaE,rp=rpstart,mom,qroot,rtlist,
nrg,del,df,qSQ,deltaQ,qtry},
deltaE = DeltaEmax /. {opts} /. Options[AnhOscTrack];
mom = N[P2C[{rp,theta}]];
groot = contractQ[gstart,mom,t,50];
rtlist = {qroot};
Do [nrg = Ham[qroot,mom] ;
del = deltaE Max[1.,Abs[nrgl];
df = Der[denomF [#,t]&,nrg,del];
qSQ = qroot~2;
deltaQ = -(drp/rp)qroot mom~2 df/
(gSQ(1.-gSQ)df + 2. denonmF[nrg,t]);
qtry = qroot+deltalQ;
rp += drp;
mom = N[P2C[{rp,theta}]];
qroot = contractQ[qtry,mom,t,50];
AppendTo [rtlist,qroot], {len}];
rtlist]

TrackZeroPRadQ[pstart_,theta_,rqstart_,drq_,len_,t_,
opts___Rule] := Module[{deltaE,rg=rqstart,pos,proot,rtlist,
nrg,del,df,qSQ,deltaQ,qtry},
deltaE = DeltaEmax /. {opts} /. Options[AnhOscTrack];
pos = N[P2C[{rq,theta}]];
proot = contractP[pos,pstart,t,50];
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rtlist = {proot};
Do [nrg = Ham[pos,proot];
del = deltaE Max[1.,Abs[nrgl];
df = Der[denomF [#,t]&,nrg,del];
qSQ = pos~2;
deltaP = -(drq/rq) (qSQ(1.-gSQ)df + 2. denomF[nrg,t])/
(proot df);
ptry = proot+deltaP;
rq += drq;

pos = N[P2C[{rq,theta}]];

proot = contractP[pos,ptry,t,50];

AppendTo [rtlist,proot], {len}];
rtlist]

TrackNearestQZero[gstart_,pstart_,drp_,len_,t_,opts___Rule] :=
Module [{deltaE,qroot,proot,rtlist,nrg,del,df,qsSQ,xsi,
zee,drovr,eta,ang,phi,dp,qtry},
deltaE = DeltaEmax /. {opts} /. Options[AnhOscTrack];
groot = contractQ[gstart,pstart,t,50];
proot = N[pstart];
rtlist = {{qroot,proot}};
Do [nrg = Ham[qroot,proot];
del = deltaE Max[1.,Abs[nrgl];
df = Der[denomF [#,t]&,nrg,del];
qsSQ qroot~2;
xsi = proot df/(qSQ(1.-qSQ) df + 2. denomF[nrg,t]);
zZee = xsi proot;
drovr = drp/Abs[proot];
eta = (2.+drovr)drovr;
phi = ang /. Last[
FindMinimum[Abs[1-zee(Sqrt [eta+Cos[ang] “2]-Cos[ang] )E~ (ang I)],
{ang,{-0.1,0.1}}] 1;
dp = proot(Sqrt[eta+Cos[phi] "2]-Cos[phi])E~ (phi I);
proot += dp;
qtry = qroot(1l.-xsi dp);
groot = contractQ[qtry,proot,t,50];
AppendTo[rtlist,{qroot,proot}], {lenl}];
rtlist]

TrackNearestPZero[gstart_,pstart_,drq_,len_,t_,opts___Rule] :=
Module[{deltaE,qroot,proot,rtlist,nrg,del,df,qsQ,zeta,
zee,drovr,eta,ang,phi,dq,ptry},
deltaE = DeltaEmax /. {opts} /. Options[AnhOscTrack];
groot = N[gstart];
proot = contractP[gstart,pstart,t,50];
rtlist = {{qroot,proot}};
Do[nrg = Ham[qroot,proot];
del = deltaE Max[1.,Abs[nrgl];
df = Der[denomF [#,t]&,nrg,del];
qSQ = qroot~2;
zeta = (qSQ(1.-gSQ)df + 2. denomF[nrg,t])/
(qroot proot~2 df);
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zee = N[zeta qroot];
drovr = N[drq/Abs[qroot]];
eta = N[(2.+drovr)drovr];
phi = ang /. Last[
FindMinimum[Abs[1-zee(Sqrt [eta+Cos[ang] “2]-Cos[ang] )E~ (ang I)],
{ang,{-0.1,0.1}}11;
dq = qroot(Sqrt[eta+Cos[phi] "2]-Cos[phi])E~ (phi I);
qroot += dq;
ptry = proot(l.-zeta dq);
proot = contractP[qroot,ptry,t,50];
AppendTo[rtlist,{qroot,proot}], {lenl}];
rtlist]

End[]
Protect[contractP,contractQ,pContraction,qContraction,qfDenom,
TrackZeroPArc(Q,TrackZeroPRadQ, TrackZeroQArcP,

TrackZeroQRadP, TrackNearestPZero,TrackNearestQZero]

EndPackage[]
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AngMomD.m

(* AngMomD.m

This package contains functions for evaluating the Wigner D
functions and their relatives. Written by D. T. Abell, 27 May
1994. *)

BeginPackage ["AngMomD ‘"]

AngMomD: :usage = "The package AngMomD.m contains the Wigner D
functions and their relatives."

djm: :usage = "djm[j,mp,m,b] returns the matrix element
<j,mp|IDR_y(®))|j,m>."

djmp: :usage = "djmp[j,mp,m,b] returns the matrix element
<j,mp|D(R_y(b))|j,m> in the +J_y convention."

djmx::usage = "djmx[j,mp,m,b] is a faster version of djm. It
uses the Jacobi polynomials."

WignerD: :usage = "WignerD[j,mp,m,a,b,c] returns the matrix
element <j,mp|D(R_z(a)R_y(b)R_z(c))|j,m>."

WignerDx::usage = "WignerDx[j,mp,m,a,b,c] is a faster version of
WignerD. It uses the Jacobi polynomials."

Begin[" ‘Private‘"]

djm[j_,mp_,m_,b_] :=
Module[{c,s,npl,nml,np2,nm2,kmn, kmx, sm},
c=Cos[b/2]; s=Sin[b/2];
{np1,nm1,np2,nm2}=j+{m,-m,mp,-mp};
kmn=Max [0, - (m+mp)];
kmx=Min [nm1,nm2] ;
sm=Sum[(-1) "~ (am1-k) c” (m+mp+2k) s~ (nml+nm2-2k)/
((m+mp+k) ! (nm1-k) ! (nm2-k) ' (k) !),
{k,kmn,kmx}] ;
Sqrt[npl! nml! np2! nm2!]*sm
]

djmp[j_,mp_,m_,b_] :=

Module[{c,s,npl,nml,np2,nm2,kmn, kmx, sm},
c=Cos[b/2]; s=Sin[b/2];
{np1,nm1,np2,nm2}=j+{m,-m,mp, -mp};
kmn=Max [0 ,m-mp] ;
kmx=Min [npl,nm2] ;
sm=Sum[(-1) "k c” (npl+nm2-2k) s~ (mp-m+2k)/

((mp-m+k) ! (np1-k) ! (am2-k) ! (k) !),
{k,kmn,kmx}];

Sqrt[npl! nml! np2! nm2!]*sm
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djmx[j_,mp_,m_,b_] := Sqrt[(j+m) ! (j-m) !/ ((j+mp) ! (j—mp) !)]*
Cos[b/2] " (m+mp) Sin[b/2] " (m-mp) JacobiP[j-m,m-mp,m+mp,Cos[b]]

WignerD[j_,mp_,m_,a_,b_,c_] := E~(-I(mp*a+m*c)) djm[j,mp,m,b]

WignerDx[j_,mp_,m_,a_,b_,c_] := E"(-I(mp*a+m*c)) djmx[j,mp,m,b]

End[]

Protect [djm,djmp,djmx,WignerD,WignerDx]

EndPackage []
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ColonOps.m

(* ColonOps.m

This package defines Lie operators for Hamiltonian dynamics.
Written by D. T. Abell, 29 October 1994. *)
BeginPackage["ColonOps‘", "PBgrad‘"]

ColonOps::usage = "The package ColonOps.m defines Lie operators
for Hamiltonian dynamics."

Colon: :usage = "Colonl[qgs,ps] [f] represents the Lie operator :f:,
where the canonical variables are given in the variable lists

’gs’ and ’ps’. Colonl[gs,ps][f][g] returns :f:g == [f,g]."

ColonPower: :usage = "ColonPower[qs,ps] [f,n] represents the Lie
operator :f:"n."

ColonSqr: :usage = "ColonSqr[qgs,ps] [f] represents the Lie operator
f:72.0"

Begin[" ‘Private‘"]

Colon[qs_List,ps_List][f_] := PBlqgs,ps][f,#]&
ColonPower[gs_List,ps_List] [f_,n_] := Nest[Colon[gs,ps] [f],#,n]&
ColonSqr[gqs_List,ps_List] [f_] := ColonPower[qgs,ps][f,2]

End[]

Protect[Colon,ColonPower,ColonSqr]

EndPackage[]
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| CRconvert.m

(* CRconvert.m

This package contains functions for converting from a complex
number to a list of two real numbers and vice versa. Written by
D. T. Abell. Last modified 19 August 1994. *)
BeginPackage ["CRconvert ‘"]
CRconvert::usage = "CRconvert.m is a package for converting
between real and complex numbers in rectangular or polar

notation."

C2R::usage = "C2R[z] converts a complex number z to the
rectagular pair {x,y}."

R2C: :usage = "R2C[{x,y}] converts the rectagular pair {x,y} to a
complex number z."

C2P::usage = "C2P[z] converts a complex number z to the polar
pair {r,th}."

P2C::usage = "P2C[{r,th}] converts the polar pair {r,th} to a
complex number z."

R2P::usage = "R2P[{x,y}] converts the rectagular pair {x,y} to
the polar pair {r,th}."

P2R::usage = "P2R[{r,th}] converts the polar pair {r,th} to the
rectagular pair {x,y}."

R2S::usage = "R2S[{x,y,z}] converts the rectagular triplet
{x,y,2} to the spherical triplet {r,th,phi}."

S2R::usage = "S2R[{r,th,phi}] converts the spherical triplet
{r,th,phi} to the rectagular triplet {x,y,z}."

Begin[" ‘Private‘"]

SetAttributes [{C2R,C2P}, Listablel]
C2R[z_] := {Relz],Im[z]}
R2C[{x_,y_}] := (x) + (y) I
C2P[z_] := {Abs[z],Arglz]}
P2C[{r_,th_}] := r E"(I th)

R2P [{x_,y_}] := C2P[ R2C[{x,y}] ]

P2R[{r_,th_}] := C2R[ P2C[{r,th}] 1]
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R2S[pt:{x_,y_,z_}] :=
Module [{r}, r=Sqrt[Plus@e(pt~2)];
Which[N[z==r],{r,0,0},
N[z==-r],{r,Pi,0},
True,{r,ArcCos[z/r],ArcTan[x,y]}]]

S2R[{r_,th_,ph_}] :=
r Flatten[{Sin[th]{Cos[ph],Sin[ph]},Cos[th]}]

End[]
Protect [C2R,R2C,C2P,P2C,R2P,P2R,R2S,S2R]

EndPackage[]
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ListManipulation.m

(* ListManipulation.m

This package contains functions for doing simple manipulations
on Lists. Written by D. T. Abell. Fixed a bug in CompressList,
24 June 1994. Added SortCount, 12 April 1995. *)

BeginPackage["ListManipulation‘"]

ListManipulation::usage = "ListManipulation.m is a package of
functions for doing simple manipulations on Lists."

CompressList::usage = "CompressList[list, crit_List] selects from
list those elements for which the corresponding elements in crit
are ’True’."

SortCount: :usage = "SortCount[list] returns a list of pairs. The
first elements in each pair constitute a sorted list of the
elements in list. The second element in each pair gives the
number of occurrences of the corresponding element in the
argument of SortCount[]."

Begin[" ‘Private‘"]
toTF = {1->True, 0->False}

CompressList::badarglen = "The arguments of CompressList have
different lengths."

CompressList[list_,tf_List] :=
Module[{rlst},
rlst=Select [Transpose [{tf/.toTF,list}], (#[[1]11)&];
If [Length[Dimensions [rlst]]==2,
Transpose [rlst] [[-111, {}]1] /;
Length[list]==Length[tf] || Message[CompressList: :badarglen]

SortCount[1_List] :=
Module[{elements},
elements = Union[1];
clist = Count[l,#]& /@ elements;
Transpose[{elements,clist}]] /; Length[Dimensions[1]]==
End[]

Protect [CompressList,SortCount]

EndPackage []
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PBgrad.m

(* PBgrad.m

This package defines the Poisson Bracket, PB[f,g], using the
definition based on derivatives. Written by D. T. Abell,
26 January 1994. *)

BeginPackage ["PBgrad‘"]
PB::usage = "PB[gqs_List,ps_List] [f,g] computes the Poisson
bracket of f with g. The gs and ps are respectively the

coordinates and conjugate momenta."

Grad::usage = "Grad[f,vars] computes the gradient of f with
respect to the variables in the list vars."

Begin[" ‘Private‘"]

Grad[f_,vars_List] := D[f,#]& /@ vars

PB[gs_List,ps_List] [0,f_] = O

PB[qs_List,ps_List] [f_,0] 0
PB[gs_List,ps_List] [f_,f_] = 0

PB[gs_List,ps_List][f_,g_] :=
Grad[f,qs] .Grad[g,ps] - Grad[f,ps].Gradl[g,qgs]

End[]
Protect [Grad,PB]

EndPackage[]
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Polynomial.m

(* Polynomial.m

This package contains functions having to do with polynomials.
Written by D. T. Abell, 23 October 1994. Updated 31 January 1995
by DTA. *)

BeginPackage ["Polynomial ‘"]

Polynomial::usage = "Polynomial.m is a package of functions
having to do with polynomials."

DegreeList::usage = "Degreelist[f,x] returns a list containing
the degree in x for each term of the function f. Note that x may
be either a single variable or a list of variables."

ExponentList::usage = "ExponentList[f,x] returns a list
containing the exponents of x for each term of the function f.
Note that x may be either a single variable or a list of
variables."

HomogeneousPolynomialQ: :usage = "HomogeneousPolynomialQ[f,x]
returns True only if f is a homogeneous polynomial in the
variable(s) x. HomogeneousPolynomialQ[f,x,n] returns True only
if f is a homogeneous polynomial of degree n in the variable(s)
x."

LinearPolynomialQ: :usage = "LinearPolynomialQ[f,x] returns True
only if f is a homogeneous linear polynomial in the variable(s)
X."

NumberMonomials: :usage = "NumberMonomials[d,n] returns the number
of monomials of degree d in n variables."

NumberTrigMonomials: :usage = "NumberTrigMonomials[d,n] returns
the number of trigonometric monomials of degree d in n
variables."

NumberTrigMonomialsTotal: :usage = "NumberTrigMonomialsTotal[d,n]
returns the number of trigonometric monomials of degree d and

smaller in n variables."

PolynomialDegree: :usage = "PolynomialDegree[f,x] returns the
degree of f as a function of the variable(s) x."

Begin[" ‘Private‘"]

PolynomialDegree: :badarg = "The first argument, ‘1¢, is not a
polynomial in ‘2°¢."

DegreeList [f_,x_] := Apply[Plus,#]& /@ ExponentList[f,x]
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ExponentList[f_,x_] := Module[{xf,terms},
xf = Expand[f];
terms = If[Head[xf]===Plus, List @@ xf, {xf}];
Exponent [#,x]& /@ terms]

HomogeneousPolynomialQ[f_,x_] :=
If[!'PolynomialQ[f,qp], False,
Equal @@ DegreelList[f,x]]

HomogeneousPolynomialQ[f_,x_,n_] :=
If[!'PolynomialQ[f,qp], False,
And @@ Thread[n==DegreeList[f,x]]]

LinearPolynomialQ[f_,x_] := HomogeneousPolynomialQ[f,x,1]

NumberMonomials[deg_,nvar_] := Binomial [deg+nvar-1,deg]

1

NumberTrigMonomials [0,nvar_]

NumberTrigMonomials[deg_,nvar_] :=
Sum[Binomial [nvar,j] Binomial[deg-1,j-1]1 (27j), {j,nvar}]

NumberTrigMonomialsTotal [deg_,nvar_] :=
Sum[Binomial [nvar,j] Binomiall[deg,j]l (27j), {j,0,nvar}]

PolynomialDegree[f_,x_] := Max[DegreeList[f,x]] /;
PolynomialQ[f,x] || Message[PolynomialDegree: :badarg,f,x]

End[]
Protect [DegreelList,ExponentList,HomogeneousPolynomialQ,
LinearPolynomialQ,NumberMonomials,NumberTrigMonomials,

NumberTrigMonomialsTotal,PolynomialDegree]

EndPackage[]
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(* sp4.m
This package contains a set of basis polynomials for the Lie
algebra of sp(4). Written by D. T. Abell, 29 October 1994. *)

sp4::usage = "The package sp4.m defines a set of basis
polynomials for the Lie algebra of sp(4). These are {b[0],...,
b[3],£[1],...,£[3], gli],...,gl3]}."

Unprotect[b,f,g,qs,ps,zz,bs,fs,gs,fg,bfgl;
Clear[b,f,g]

b[0] = (1/2) (q1°2 + p172 + g272 + p272)
b[1] = g1l g2 + pl p2
b[2] = -q1 p2 + q2 pl
b[3] = (1/2) (q1°2 + p1°2 - 272 - p2°2)

f[1] = (-1/2) (q172 - p1"2 - q272 + p272)
f[2] = -q1 p1 - g2 p2
f[3] = ql1l g2 - pl p2

gll]l = -q1 p1 + q2 p2
gl2] (1/2) (g172 - p172 + 9272 - p2°2)
gl3] ql p2 + g2 pi

gs = {q1,92}
ps = {p1,p2}
zz = Flatten[{gs,ps}]

bs = b /@ Range[0,3]

fs = £ /@ Range[3]

gs = g /@ Range[3]

fg = Flatten[{fs,gs}]

bfg = Flatten[{bs,fs,gs}]

Protect[b,f,g,qs,ps,zz,bs,fs,gs,fg,bfgl;
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(* sp6.m
This package contains a set of basis polynomials for the Lie
algebra of sp(6). Written by D. T. Abell, 29 October 1994. *)

sp6::usage = "The package sp6.m defines a set of basis
polynomials for the Lie algebra of sp(6). These are
{vl0],...,p[8],£[1],...,f([6]1,g[1],...,gl61}."

Unprotect[b,f,g,qs,ps,zz,bs,fs,gs,fg,bfgl;
Clear[b,f,g]

b[0] = (q1°2 + pl°2 + q2°2 + p2°2 + q3°2 + p3~2)/2

b[1] = ql*q2 + pl*p2

b[2] = -qi*p2 + g2*pl

b[3] = (g1"2 + p1~2 - g272 - p272)/2

b[4] = ql*q3 + plx*p3

b[5] = —ql*p3 + q3+pl

b[6] = q2*%q3 + p2*p3

b[7] = -q2*p3 + q3%p2

b[8] = (q1°2 + p1°2 + q2°2 + p2°2 - 2%q3°2 - 2%p3~2)/Sqrt[12]

£[1] = (q1°2 - p1~2)/2
f[2] = ql*q2 - pl*p2
f[3] = (9272 - p272)/2
f[4] = q2%q3 - p2*p3
£(5] = (q3°2 - p3°2)/2
f[6] = g3%ql - p3*pl

gl1] = qlx*p1
gl2] = ql*p2 + g2+*pl
gl[3] = q2xp2
gl4] = q2*p3 + g3*p2
gl6] = q3+p3

gl6] = g3*pl + qlx*p3

gs = {q1,92,q93}

ps = {pl,p2,p3}

zz = Flatten[{gs,ps}]

bs = b /@ Range[0,8]

fs = £ /@ Range[6]

gs = g /@ Rangel[6]

fg = Flatten[{fs,gs}]

bfg = Flatten[{bs,fs,gs}]

Protect[b,f,g,qs,ps,zz,bs,fs,gs,fg,bfgl;
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sp6tools.m

(* sp6tools.m

This package defines Lie operators for sp(6,R) together with a
number of other tools useful for studying sp(6,R) and---in
particular---its compact sub-algebras u(3) and su(3). Written by
D. T. Abell, 9 March 1995. x*)

Needs ["ColonOps ‘"]
Needs ["SU3‘"]
Needs ["USp‘"]
Get["sp6‘"]

sp6tools::usage = "The package sp6tools.m defines a set of tools
for doing calculations in the Lie algebra sp(6). It includes
the Lie operators for sp(6,R) and the USp(6)-invariant scalar
product. It also includes a definition for Lie operators with
respect to the z’s, the associated Lie operators defined in Beg
and Ruegg (1965) for the su(3) sub-algebra, and the orthonormal
basis polynomials that carry the irreducible representations of
Su(3)."

(* Lie operators generated by sp(6,R) basis polynomials in AJD’s
lecture notes. BO--B8 generate U(3) part; B1--B8 generate SU(3)
part; F1--F6, G1--G6 generate the non-compact part. *)
BO = Colonlgs,ps][b[0]]

B1 = Colonlgs,ps][b[1]]

B2 = Colonlgs,ps][b[2]]

B3 = Colonl[gs,ps] [b[3]]

B4 = Colonl[gs,ps] [b[4]]

B5 = Colonlgs,ps][b[5]]

B6 = Colonlgs,ps][b[6]]

B7 = Colonlgs,ps][b[7]]

B8 = Colonl[gs,ps] [b[8]]

F1 = Colonl[qgs,ps] [f[1]]

F2 = Colonl[gs,ps] [f[2]]

F3 = Colonlgs,ps] [£[3]]

F4 = Colonlqgs,ps] [f[4]]

F5 = Colonl[gs,ps] [f[5]]

F6 = Colonl[qgs,ps] [f[6]]

G1 = Colonl[qgs,ps][g[1]]

G2 = Colonlgs,ps][gl2]]

G3 = Colonlgs,ps][g[3]]

G4 = Colonlgs,ps][gl4]]

G5 = Colonl[qgs,ps][g[5]]

G6 = Colonl[qs,ps][gl6]]

(* norm and inner product w/r.t. {q,p}’s *)
ip = USpInner[zz]
nrm = USpNorm[zz]

(* complex co-ordinates for the five-sphere *)
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z5 = z /@ Range[3];

zbs = zs /@ Range[3];

zvec = Join[z5,z5s];

rsq = z5 . zbs;

Zmon[r_List] := Times @@ (zvec’r) /; Dimensions[r]=={6}

(* norm and inner product w/r.t. z’s *)
zip = USpInner[zvec]
znrm = USpNorm[zvec]

(* Lie operators in terms of the z’s *)

Zcolon[f_] := -I Colon[z5,z5s] [f][#]&

ZcolonSqr[f_] := - ColonSqr[z5,z5s] [f] [#]&
ZcolonPower[f_,n_] := (-I)"n ColonPower[z5,z5s] [f,n] [#]&

(* routines for converting between the {q,p}’s and the z’s *)
toQP [xpr_] := Expand[xpr /.

{z[1]1->(q1+I*p1)/Sqrt[2], zs[1]1->(q1l-I*pl)/Sqrt[2],
z[2]->(q2+I*p2) /Sqrt[2], zs[2]->(q2-I*p2)/Sqrt[2],
z[3]->(q3+I*p3)/Sqrt[2], zs[3]1->(q3-I*p3)/Sqrt[2]}]

toZ[xpr_] := Expandl[xpr /.

{q1-> (z[1]+zs[1])/Sqrt[2], p1-> (z[1]-zs[1])/(I*Sqrt[2]),
q2-> (z[2]+zs[2])/Sqrt[2], p2-> (z[2]-zs[2])/(I*Sqrt[2]),
q3-> (z[3]+zs[3])/Sqrt[2], p3—> (z[3]1-zs[3])/(I*Sqrt[2]1)}]

(* an alternative basis for the Lie sub-algebra of su(3) *)
h{1] = -I/(2 Sqrt[3]1) (z[2] zs[2] - z[3] zs[3]);

h[2] -1/6 (-2 z[1] zs[1] + z[2] zs[2] + z[3] zs[3]);

el[1] = -I/Sqrt[6] z[2] zs[3];

e[2] = -I/Sqrt[6] z[2] zs[1];
e[3] = -I/Sqrt[6] z[3] zs[1];
em[1] = -I/Sqrt[6] z[3] zs[2];
em[2] = -I/Sqrt[6] z[1] zs[2];
em[3] = -I/Sqrt[6] z[1] zs[3];

(* operators in the alternative su(3) basis *)

H1 = Zcolon[h[1]];
H2 = Zcolon[h[2]];
El1 = Zcolon[e[1]];
E2 = Zcolon[e[2]];
E3 = Zcolon[e[3]];
Eml = Zcolon[em[1]];
Em2 = Zcolon[em[2]];
Em3 = Zcolon[em[3]];

(* operators for isotopic spin and hypercharge *)
I3 = Zcolon[Sqrt[3] h([1]];
Y = Zcolon[2 h([2]];

(* ladder operators and their coefficients
for su(2) sub-algebra *)
Iup = Zcolon[Sqrt[6] e[1]1];
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Idn = Zcolon[Sqrt([6] em[1]];
culj_,m_] := -Sqrt[(j-m) (j+m+1)]
cdlj_,m_] := -Sqrt[(j+m) (j-m+1)]

(* total isotopic spin and its coefficient *)
Isq = I3[I3[#]] + (1/2) (Tup[Idn[#]] + Idn[Iup[#]11)&;
a2[j_1 = j(G+1)

(* operators for checking the eigenvalues I3 and Y *)
13Y = {I3[#],Y[#]}/#&;
II3Y = {Isq[#],I3[#],Y[#]}/#&;

(* su(3) basis polynomials for space of f(1)’s,
normalized using the USp(6) scalar product *)
psilji_,j2_,i_,i3_,y_,1_] :=
Module [{xp,ket},
xr=(1-j1-j2)/2;
ket=rsq”xr SU3psiZ[j1,j2,1,i3,y];
ket/znrm[ket]]

Protect[BO,B1,B2,B3,B4,B5,B6,B7,B8,F1,F2,F3,F4,F5,F6,G1,G2,G3,
G4,G5,G6,ip,nrm,z5,z5s,zvec,zip,znrm,Zcolon,ZcolonSqr,
ZcolonPower,toQP,toZ,h,e,em,H1,H2,E1,E2,E3,Eml,Em2,En3,
I3,Y,Iup,Idn,cu,cd,Isq,a2,I3Y,II3Y,psi];
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(* SU2phi.m

This package contains basis functions for the space of f_1’s
through f_5’s that transform as irreducible representations of
SU(2). Written by D. T. Abell, 14 February 1995. *)

BeginPackage ["SU2phi ‘"]

Phi::usage = "Phi[j,1l,mu] returns the collection of SU2 functions
philj,m,1,mu] for m = {j,...,-j}."
phi::usage = "phil[j,m,1,mu] returns the SU2 function |j,m;1,mu>

written in terms of the y’s."
(x £_1’s %)

Phil[1/2,1,1] =
{phil1/2, 1/2,1,1] = y1 (x = (q1+iq2)/Sqrt[2] *),

phil1/2,-1/2,1,1] = y2 (x = (p2+ipl)/Sqrt[2] *)}
Phi[1/2,1,0] =

{phil1/2, 1/2,1,0] = y3 (x = (pl+ip2)/Sqrt[2] *),
phil1/2,-1/2,1,0] = y4 (x = -(q2+iql)/Sqrt[2] *)}

(x £_2°s *)

Phi[1,2,2] =

{phil1, 1, 2,2] = y1~2/Sqrt[2],
phill, 0, 2,21 = y1 y2,
phil1,-1, 2,2] = y2°2/Sqrt[2]}
Phi[1,2,1] =

{phi[1, 1, 2,1] = y1 y3,

phi[1l, 0, 2,11 = (y1 y4 + y2 y3)/Sqrt[2],
phil1,-1, 2,1] = y2 y4}
Phi[1,2,0] =

{phil1, 1, 2,0] = y3°2/Sqrt[2],
phil[1l, 0, 2,0] = y3 y4,
phi[1,-1, 2,0] = y4~2/Sqrt[2]}
Phi[0,2,1] =

{phif0, 0, 2,1] = (y1 y4 - y2 y3)/Sqrt[2]}

(x £_3’s %)

Phi[3/2,3,3] =
{phil[3/2, 3/2, 3,31 = y1°3/Sqrt[3'1,
phil[3/2, 1/2, 3,3] y172 y2/Sqrt([2],
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phi[3/2,-1/2, 3,31 = y1 y272/8qrt[2],
phi[3/2,-3/2, 3,3] = y273/Sqrt[3!1}

Phi[3/2,3,2] =

{phil[3/2, 3/2, 3,2] = y1°2 y3/Sqrt[2],

phil[3/2, 1/2, 3,2] = (2 y1 y2 y3 + y1°2 y4)/Sqrt[3!],
phi[3/2,-1/2, 3,2] = (2 y1 y2 y4 + y2°2 y3)/Sqrt[3!],
phi[3/2,-3/2, 3,2] = y2°2 y4/Sqrt[2]}

Phi[3/2,3,1] =

{phi[3/2, 3/2, 3,1] = y1 y372/Sqrt[2],

phil3/2, 1/2, 3,11 = (2 yl1 y3 y4 + y2 y3~2)/Sqrt[3'],
phil3/2,-1/2, 3,11 = (2 y2 y3 y4 + yi y4~2)/Sqrt[3'],
phil[3/2,-3/2, 3,11 = y2 y4~2/Sqrt[2]}

Phi[3/2,3,0] =

{phil3/2, 3/2, 3,01 = y3~3/Sqrt[3'],
phi[3/2, 1/2, 3,0] = y3°2 y4/Sqrt[2],
phil3/2,-1/2, 3,0] = y3 y4~2/Sqrt[2],
phil3/2,-3/2, 3,0] = y4~3/Sqrt[3!]}

Phi[1/2,3,2] =
{phil1/2, 1/2, 3,2] = (y1°2 y4 - y1 y2 y3)/Sqrt([3],
phil[1/2,-1/2, 3,2] = (y1 y2 y4 - y2°2 y3)/Sqrt[3]1}

Phi[1/2,3,1] =
{phil1/2, 1/2, 3,11 = (y2 y3°2 - y1 y3 y4)/Sqrt[3],
phil[1/2,-1/2, 3,11 = (y2 y3 y4 - y1 y4°2)/Sqrt[3]1}

(x £_4’s *)

Phi[2,4,4] =

{phi[2, 2, 4,4] = y1~4/Sqrt[4'],

phil2, 1, 4,4] = y1°3 y2/Sqrt([3!],

phil2, 0, 4,4] = y1°2 y2°2/2,

phil2,-1, 4,4] = y1 y2°3/Sqrt[3!],

phi[2,-2, 4,4] = y2°4/Sqrt[4']}

Phi[2,4,3] =

{phil2, 2, 4,3] = y1°3 y3/Sqrt([3!],

phil[2, 1, 4,3] = (3 y1°2 y2 y3 + y1°3 y4)/Sqrt[4!],
phil[2, 0, 4,3] = (y1 y2°2 y3 + y1°2 y2 y4)/2,
phi[2,-1, 4,3] = (3 y1 y2°2 y4 + y2~3 y3)/Sqrt[4!],
phi[2,-2, 4,3] = y2°3 y4/Sqrt[3!]}

Phi[2,4,2] =

{phil2, 2, 4,2] = y1°2 y3°2/2,

phil2, 1, 4,2] = (y1 y2 y3°2 + y1°2 y3 y4)/2,
phi[2, 0, 4,2] = (y1°2 y4°2 + 4 y1 y2 y3 y4 + y2°2 y372)/

Sqrt[4!],
phil[2,-1, 4,2] = (y1 y2 y4~2 + y2°2 y3 y4)/2,
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phil[2,-2, 4,2] = y2°2 y4~2/2}

Phi[2,4,1] =

{phil2, 2, 4,1] = y1 y3°3/Sqrt[3!],

phil[2, 1, 4,1] = (3 y1 y3°2 y4 + y2 y3°3)/Sqrt[4!],

phil[2, 0, 4,11 = (y1 y3 y4°2 + y2 y372 y4)/2,

phi[2,-1, 4,1] = (3 y2 y3 y4°2 + y1 y4~3)/Sqrt[4!],

phi[2,-2, 4,1] = y2 y4~3/Sqrt[3!]}

Phi[2,4,0] =

{phi[2, 2, 4,0] = y374/Sqrt[4'],

phi[2, 1, 4,0] = y3°3 y4/Sqrt[3!],

phil2, 0, 4,0] = y3~2 y4~2/2,

phil[2,-1, 4,0] = y3 y4~3/Sqrt[3!],

phil[2,-2, 4,0] = y4~4/Sqrt[4!']1}

Phi[1,4,3] =

{phi[1, 1, 4,3] = (y1°3 y4 - y1°2 y2 y3)/Sqrt[8],

phil1, 0, 4,3] = (y1°2 y2 y4 - y1 y2°2 y3)/2,

phil1l,-1, 4,3] = (y1 y2°2 y4 - y2°3 y3)/Sqrt[8]}

Phi[1,4,2] =

{phi[1, 1, 4,2] = (y1°2 y3 y4 - y1l y2 y372)/2,

phil[1l, 0, 4,2] = (y1°2 y4°2 - y272 y372)/Sqrt[8],

phill,-1, 4,2] = (y1 y2 y4"2 - y2~2 y3 y4)/2}

Phi[1,4,1] =

{phi[1, 1, 4,1] = (y2 y3°3 - y1 y3°2 y4)/Sqrt[8],

phi[1l, 0, 4,1] = (y2 y3°2 y4 - y1 y3 y4~2)/2,

phill,-1, 4,11 = (y2 y3 y4°2 - y1 y4~3)/Sqrt[8]}

Phi[0,4,2] =

{phi[0, 0, 4,2] = (y172 y4°2 - 2 y1 y2 y3 y4 + y2°2 y372)/
Sqrt[12]}

(* £_5’s *)

Phi[5/2,5,5] =

{phi(5/2, 5/2, 5,5] = y1°5/Sqrt[5!],
phil5/2, 3/2, 5,5] = y17°4 y2/Sqrt[4!],
phi[5/2, 1/2, 5,51 = y1°3 y2°2/Sqrt[12],
phi[5/2,-1/2, 5,5] = y1°2 y2~3/Sqrt[12],
phil5/2,-3/2, 5,5] = y1 y2~4/Sqrt[4!],
phi[5/2,-5/2, 5,5] = y2°5/Sqrt[5!]1}

Phi[5/2,5,4] =

{phi[56/2, 5/2, 5,4] = y1°4 y3/Sqrt[4!],

phil[5/2, 3/2, 5,4] = (4 y1°3 y2 y3 + y1~4 y4)/Sqrt[5!'],
phi[5/2, 1/2, 5,4] = (3 y1°2 y272 y3 + 2 y1°3 y2 y4)/Sqrt[60],
phil[5/2,-1/2, 5,41 = (3 y1°2 y2°2 y4 + 2 y1 y2°3 y3)/Sqrt[60],
phi[5/2,-3/2, 5,41 = (4 y1 y2°3 y4 + y2~4 y3)/Sqrt[5!],
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phi[5/2,-5/2,

Phi[5/2,5,3] =
{phi[5/2, 5/2,
phi[5/2, 3/2,
phil5/2, 1/2,

phi[5/2,-5/2,

phi[5/2,-3/2,
phil5/2,-1/2,

Phi[5/2,5,2] =
{phi[5/2, 5/2,
phi[5/2, 3/2,
phi[5/2, 1/2,

phil5/2,-1/2,

phi[5/2,-3/2,
phi[5/2,-5/2,

Phi[5/2,5,1] =
{phi[5/2, 5/2,
phi[5/2, 3/2,
phi[5/2, 1/2,
phil5/2,-1/2,
phi[5/2,-3/2,
phi[5/2,-5/2,

Phi[5/2,5,0] =
{phil5/2, 5/2,
phi[5/2, 3/2,
phil5/2, 1/2,
phi[5/2,-1/2,
phi[5/2,-3/2,
phi[5/2,-5/2,

Phi[3/2,5,4] =
{phi[3/2, 3/2,
phil[3/2, 1/2,
phil[3/2,-1/2,
phil[3/2,-3/2,

Phi[3/2,5,3] =
{phi[3/2, 3/2,
phil[3/2, 1/2,
phi[3/2,-1/2,

phi[3/2,-3/2,

5,2]

5,1]

5,1]
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y2°4 y4/Sqrt[4!1}

= y1°3 y3~2/Sqrt[12],
= (2 y1"3 y3 y4 + 3 y1°2 y2 y3~2)/Sqrt[60],
= (y1"3 y4°2 + 6 y1°2 y2 y3 y4

+ 3 y1 y2°2 y3°2)/Sqrt[5!],
(y2°3 y3°2 + 6 y1 y2°2 y3 y4
+ 3 y1"2 y2 ya~2)/Sqrt[5!1,

= (2 y2°3 y3 y4 + 3 y1l y2°2 y4~2)/Sqrt[60],
= y2°3 y4~2/Sqrt[12]}

= y1°2 y3°3/Sqrt[12],
5,2] =
5,2] =

(2 y1 y2 y3°3 + 3 y1°2 y3~2 y4)/Sqrt[60],
(y2°2 y3°3 + 6 y1 y2 y3°2 y4

+ 3 y1°2 y3 y4°2)/Sqrt[5!],
(y1°2 y4°3 + 6 y1 y2 y3 y4~2

+ 3 y2°2 y3°2 y4)/Sqrt[5!'],

= (2 y1 y2 y4°3 + 3 y2°2 y3 y4~2)/Sqrt[60],
= y2°2 y4~3/8qrt[12]1}

= y1 y374/Sqrt[4!],
5,11 =
5,11 =
5,1] =
5,1] =

(4 y1 y3°3 y4 + y2 y3°4)/Sqrt[5!'],
(3 y1 y3°2 y4~2 + 2 y2 y3~3 y4)/Sqrt[60],
(3 y2 y372 y4~2 + 2 y1 y3 y4~3)/Sqrt[60],
(4 y2 y3 y4°3 + y1 y4~4)/Sqrt[5!'],

= y2 y4~4/Sqrt[4!1}

= y3°5/Sqrt[5!],

= y374 y4/Sqrt[4!],

= y373 y4~2/Sqrt[12],
= y3°2 y4~3/Sqrt[12],
= y3 y4~4/Sqrt[4!],

= y4°5/Sqrt[5!1}

= (y174 y4 - y173 y2 y3)/Sqrt[30],
= (y173 y2 y4 - y1°2 y2~2 y3)/Sqrt[10],
= (y172 y2°2 y4 - y1 y2°3 y3)/Sqrt[10],
= (y1 y2°3 y4 - y27°4 y3)/Sqrt[30]}

= (y173 y3 y4 - y1°2 y2 y3°2)/Sqrt[10],
= (y173 y4°2 + y1°2 y2 y3 y4 -

2 y1 y2°2 y3°2)/Sqrt[30],
(2 y1°2 y2 y4°2 - y1 y2°2 y3 y4 -
y2°3 y372)/8qrt[30],
(y1 y272 y4~2 - y2°3 y3 y4)/Sqrt[10]}
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Phi[3/2,5,2] =
{phil3/2, 3/2, 5,2] =
phil3/2, 1/2, 5,2] =
phi[3/2,-1/2, 5,2] =
phil[3/2,-3/2, 5,2] =
Phi[3/2,5,1] =
{phil3/2, 3/2, 5,11 =
phi[3/2, 1/2, 5,1] =
phi[3/2,-1/2, 5,1] =
phi[3/2,-3/2, 5,1] =

Phi[1/2,5,3] =
{phil1/2, 1/2, 5,3] =

phil1/2,-1/2, 5,3] =
Phi[1/2,5,2] =
{phil1/2, 1/2, 5,2] =

phil1/2,-1/2, 5,2]

APPENDICES

(yl y2 y3°3 - y172 y3°2 y4)/Sqrt[10],
(y2°2 y3°3 + y1 y2 y3°2 y4 -
2 y1°2 y3 y4°2)/Sqrt[30],
(2 y272 y372 y4 - y1 y2 y3 y4°2 -
y172 y4~3)/8qrt[30],
(y2°2 y3 y4°2 - y1 y2 y4~3)/Sqrt[10]}

(y2 y3°4 - y1 y3~3 y4)/Sqrt[30],
(y2 y3°3 y4 - y1 y3°2 y4°2)/Sqrt[10],
(y2 y3°2 y4°2 - y1 y3 y4~3)/Sqrt[10],
(y2 y3 y4°3 - y1 y4~4)/Sqrt[30]}

(-y1 y272 y372 + 2 y172 y2 y3 y4 -

y1°3 y4~2)/Sqrt[4!],
(-y172 y2 y4"2 + 2 y1 y2°2 y3 y4 -

y2°3 y37°2)/Sqrt[4!']1}

(-y172 y3 y4°2 + 2 y1 y2 y3°2 y4 -

y2°2 y373)/Sqrt[4!'],
(-y272 y3"2 y4 + 2 y1 y2 y3 y4~2 -

y1°2 y4~3)/Sqrt[4!1}

Protect [Phi,phi,yl,y2,y3,y4]

EndPackage []
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(* SU3.m

This package contains functions that compute the harmonic
functions on the five-sphere as given in Beg and Ruegg,
J. Math. Phys., 6, 677--682 (1965). Written by D. T. Abell. *)

BeginPackage["SU3‘", "AngMomD*"]

SU3::usage = "SU3.m is a package that computes basis functions
for representations of SU(3)---in particular, the harmonic
functions on the five-sphere. (See Beg and Ruegg, J. Math.
Phys., 6, 677--682 (1965).)"

SU3DirectProduct: :usage = "SU3DirectProduct[jl,j2,jlp,j2p] uses
the Clebsch-Gordan series for SU(3) to return a list of the SU(3)
representations that occur in the direct product of (j1,j2) with

(Gip,j2p)."

SU3dim: :usage = "SU3dim[p,q] returns the dimension of the SU(3)
representation (p,q)."

SU3psi::usage = "SU3psilp,q,I,I3,Y] returns the SU(3) harmonic
function |p,q;I,I3,Y> written in terms of the angles on the
five-sphere: {th, xi, ph[1], ph[2], ph[3]}."

SU3psiZ::usage = "SU3psiZlp,q,I,I3,Y] returns the SU(3) harmonic
function |p,q;I,I3,Y> written in terms of six complex variables:
{z[1], zx[1], z[2], =zx[2], =z[3], =zx[3]}."

SU3reps::usage = "SU3reps[d] returns a list containing all of
the SU(3) representations carried by polynomials of degree d in
six variables."

th::usage =
"One of the angles on the five-sphere; range [0,Pi/2]."

Xi::usage =
"One of the angles on the five-sphere; range [0,Pi/2]."

ph::usage = "The ph[j], j={1,2,3}, comprise three of the angles
on the five-sphere; each has a range [0,2Pi]."

z::usage = "The z[j], j={1,2,3}, comprise the three (complex)
variables that define the five-sphere. In terms of angles on the
five-sphere z[1]=E~ (I ph[1])*Cos[th],

z[2]=E~ (I ph[2])*Sin[th]*Cos[xi], and

z[3]=E" (I ph[3])*Sin[th]*Sin[xi]."

zs::usage = "The zs[j], j={1,2,3}, denote the complex conjugates
of z[jl. The z[j] and z*x[j] satisfy
z[1] z*[1] + z[2] z*[2] + z[3] z*[3] == 1."
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Format[ph[j_]] := SequenceForm[ph,Subscript[j]]
Format[z[j_]] := SequenceForm[z,Subscript[j]]
Format[zs[j_]] := SequenceForm[z,"*",Subscript[jl]

Begin[" ‘Private‘"]

f[1]= Cos[th]
f[2]= Sin[th] Cos[xi]
f[3]= Sin[th] Sin[xi]

toza = {E"( I ph[j_1) :> z[j1/£[j],
-I ph([j_1) :> zs[j1/£[j],
I ph(j_1+x_) :> E~x z[j1/£f[j],
-I phl[j_J+x_) :> E~x zs[j1/£[j],
Complex[0,n_7Positive] ph[j_1) :> (z[j1/£[jl)"n,
E~(Complex[0,n_?Negative] ph[j_1) :> (zs[jl1/£f[j1)"(-n),
E~(Complex[0,n_?7Positive] ph[j_] + x_) :> E~x (z[j1/£f[j]1) n,
E~ (Complex[0,n_7Negative] ph[j_]1 + x_) :> E"x (zs[jl/f[j1)"(-n)}

N AN A

-
£
£
£

tozb = {
Cos[xi]l~(n_.) :> z[2]1"(n/2) zs[2]"(n/2)/(Sin[th])"n /; EvenQ[n],
Sin[xi]~(n_.) :> z[3]1"(n/2) zs[3]1"(n/2)/(Sin[th])"n /; EvenQ[nl}

tozc = {
Cos[th]"(n_.) :> z[1]1"(n/2) zs[1]~(n/2) /; EvenQ[n],
Sin[th]~“(n_.) :> (z[2] zs[2] + z[3] zs[3])"(n/2) /; EvenQ[nl}

sudsum[n_,np_,m_,mp_] :=
Join[{{n+np,m+mp}},
Table [{n+np-2i,m+mp+i},{i,Min[n,npl}],
Table [{n+np+k,m+mp-2k},{k,Min [m,mp] }]1]

(* NB: Cannot use djmx[]!! *)
SU3psiljl_,j2_,j_,jz_,y_] := 1/Sin[th]*
djm[(j1+j2+1) /2, (j1-j2-3y+63+3) /6, (j1-j2-3y-63-3)/6,2th] *
djmlj, (j1-j2)/3+y/2,jz,2xi]*
E"(I (j1-j2) (ph[1]+ph[2]+ph[3])/3)*
E"(I jz(ph[2]-ph[3]1))*
E~(I y(-2ph[1]+ph[2]+ph[3])/2)

SU3psizl[il_,j2_,j_,jz_,y_1 :=
Expand [SU3psilj1,j2,j,jz,yl] //. toza //. tozb //. tozc

SU3dim[j1_,j2_1 := (§1+1) (j2+1) (j1+j2+2)/2
SU3dim[{j1_,j2_}] := SU3dim[j1,j2]

SU3reps[d_] :=
Flatten[Table[{j1,j2},{j1,0,d},{j2,Mod[d-j1,2],d-j1,2}],1]
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SU3DirectProduct[j1_,j2_,jip_,j2p_]1 :=
Reverse[Flatten[
Table[su3sum[j1-i,jlp-k, j2-k,j2p-i],
{i,0,Min[j1,j2pl},{k,0,Min[j2,jip]l}], 21]

SU3DirectProduct [{j1_,j2_},{jlp_,j2p_}] :=
SU3DirectProduct[j1,j2,jlp,j2p]

End[]

Protect [SU3dim,SU3DirectProduct,SU3psi,SU3psiZ,SU3reps,
th,xi,ph,z,zs]

EndPackage[]
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(* SU3wts.m

This package contains functions that generate the weights for
any irreducible representation (j1,j2) of SU(3). See
S. Gasiorowicz, Elementary Particle Physics (John Wiley & Somns,
1966) or S. Gasiorowicz, A Simple Graphical Method in the
Analysis of SU_3, ANL-6729 (Argonne National Laboratory, 1963).
Written by D. T. Abell, 3 July 1995. *)

BeginPackage ["SU3wts ‘"]

SU3wts::usage = "The package SU3wts.m contains functions that
generate the weights for any irreducible representation (j1,j2)
of SU(3)."

HighestWeightSU3: :usage = "HighestWeightSU3[j1,j2] returns the
highest weight for the irreducible SU(3) representation (j1,j2)."
SU31ii3y::usage = "SU3ii3y[j1,j2] returns the values of I, I3,

and Y for the irreducible representation (j1,j2) of SU(3). 1In
the language of strongly interacting particles, these values
represent isotopic spin, z-component of isotopic spin, and
hypercharge."

SU3i3y::usage = "SU3i3y[jl,j2] returns the values of I3 and Y
for the irreducible representation (j1,j2) of SU(3). In the
language of strongly interacting particles, these values
represent the z-component of isotopic spin and hypercharge."

SU3weights::usage = "SU3weights[j1,j2] returns the weights for
the irreducible representation (j1,j2) of SU(3)."

Begin[" ‘Private‘"]

IY[j1_,j2_]1 := Module[{wh,da,db,iyt,iy},
wh={Sqrt [3],2}*HighestWeightSU3[j1,j2];
da=Max[0,j2-j1];
db=Max [0, j1-j2];
iyt=If[j1>=j2,Table[{i-y/2,-y},{y,0,j1-j2},{1,0,-j2,-1}],

Table[{i-y/2,y},{y,j2-j1,0,-1},{i,0,-j1,-1}1];

iy=Table[{i-y/2,y},{y,j2,1+da,-1},{i,0,y-j2,-1}];
iy=Joinl[iy,iyt];
iy=Joinl[iy,Table[{i-y/2,-y},{y,1+db,j1},{i,0,y-j1,-1}11;
wh+#& /@ Flatten[iy,1]]

toiil3y[{i_,y_}] := Table[{i,i3,y},{i3,i,-i,-1}]
HighestWeightSU3[j1_,j2_] := {(j1+j2)/(2Sqrt[31),(j1-j2)/6}

SU3ii3y[j1_,j2_1 := Flatten[toii3y /@ IY[j1,j2], 1]
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SU3i3y[j1_,j2_] := Dropl[#,1]& /@ SU3ii3y[j1,j2]
SU3weights[j1_,j2_] := {1/Sqrt[3],1/2}*#& /@ SU3i3y[j1,j2]
HighestWeightSU3[{j1_,j2_}] := HighestWeightSU3[j1,j2]
SU3ii3y[{j1_,j2_}] := SU3ii3y[j1,j2]

SU3i3y[{j1_,j2_}] := SU3i3y[j1,j2]

SU3weights[{j1_,j2_}] := SU3weights[j1, j2]

End[]

Protect [HighestWeightSU3,5U31i3y,SU3i3y,SU3weights]

EndPackage []
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(* USp.m

This package contains a function for evaluating the USp inner
product between polynomials. Written by D. T. Abell,
21 March 1994. Added complex arguments 17 May 1994. Added
USpNorm 22 June 1994. %)

BeginPackage["USp‘"]

USp::usage = "The USp.m package defines for polynomials an inner
product, and its consequent norm, that is invariant under unitary
symplectic transformations."

USpInner::usage = "USpInner[gpvars] [f,g] returns the USp(2n)
inner product between f and g. Here f and g denote polynomials
in the 2n variables listed in qpvars."

USpNorm: :usage = "USpNorm([gqpvars] [f] returns the USp(2n) norm
of £ (i.e., Sqrt[<f,f>]). Here f denotes a polynomial in the 2n

variables listed in gpvars."

Begin[" ‘Private‘"]

|
(@]

uspin[qgps_][0,g_]
uspinlqps_] [f_,0]

I
(@]

(uspinlqps] [#,gl& /@ £)
(uspinlqps] [£,#]& /@ g)

uspinlqps_] [f_Plus,g_]
uspin[qgps_] [f_,g_Plus]

uspinlqps_1[f_,g_] :=
Module [{xf,xg,mon,cf,cg,usp},
{xf ,xg}=Exponent [#,qps]& /@ {f,g};
If [xf=!=xg,0,
mon=Times@@(gps~xf) ;
{cf,cgt=Coefficient [#,monl& /@ {f,g};
usp=Times@QFactorial [xf] ;
Conjugate [cf]*cg*usp] ]

USpInner[qps_][f_,g_] := uspin[qps] [Expand[f],Expand[g]]
USpNorm[qps_] [f_] := Sqrt[USpInner[qps][f,f]]

End[]

Protect [USpInner,USpNorm]

EndPackage[]



APPENDIX I. Mathematica NOTEBOOKS

This appendix contains all of the Mathematica “notebooks” referred to in the main text,
most of which make use of the packages listed in Appendix H. These notebooks are arranged
as follows, in order of appearance:

SU2PRICG . MA ..ttt et §15.2.3
Gram et _SUZ2.IMA ..ttt ettt ettt e e e e e §15.2.4
Gram et _U2 . ma ..ttt ettt ettt e §15.2.5
Gram et _SUB.IMA ..ttt ittt ettt e e e e e §15.3.2
GramXct_ULIN.mMa .. ...t §15.4

252
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SU2phiCG.ma

Using Clebsch-Gordan Coefficients and Ladder Operators
to Compute the Higher-Order Basis Functions
This Mathematica notebook shows how to compute for four-dimensional phase space a set
of basis functions that carry irreducible representations of SU(2). The method used here

employs the Clebsch-Gordan coeflicients, supplied by Mathematica, and a lowering operator
defined below.

M Definitions and Functions
First let’s import the packages that define Lie operators, the inner product <,>, and the
basis elements of the sp(4,R) Lie algebra.

<<ColonOps.m
<<USp.m
<<sp4.m

Now define the Hermitian basis elements a[i] for the su(2) Lie subalgebra in sp(4,R), and
then go on to define the analogues of the various angular momentum operators usually defined
in quantum mechanics.

{al1l,al2],al31} = -I/2 {b[3]1,b[1],b[2]};

(x Jx, Jy, Jz *)

Ax = Colonl[qgs,ps][a[1]];
Ay = Colonl[qgs,ps][a[2]];
Az = Colon(gs,ps][al3]];
(x J°2 %)
Asq = (ColonSqrlqgs,ps][al1]][#] +

ColonSqrlqgs,ps] [a[2]] [#] +
ColonSqr(qgs,ps] [a[3]1] [#])&;

(* ladder operators J+, J- x)
Aup = (Ax[#] + I Ay[#1)&;
Adn = (Ax[#] - I Ay[#1)&;

(* coefficients for J~2, J+, J- *)
a2[j_1 = j(G+1)

culj_,m_] := Sqrt[(j-m) (j+m+1)]
cdlj_,m_] := Sqrt[(j+m) (j-m+1)]

Here we define two abbreviations:

XA = ExpandAll;
rt2 = Sqrt[2];

All of the angular momentum-like operators defined above act with respect to the variables
{q1,92,p1,p2}, but we will want to express the basis functions we seek, the p(j,m;l, p),
using the variables {y1,y2,y3,y4}. The following two functions convert back and forth
between these two sets of variables.

toY[xpr_] := Expandl[xpr /.
{q1—> (y1+I*y4)/rt2, q2-> (y1-Ixy4)/(I rt2),
pl-> (y2+Ixy3)/(I rt2), p2-> (y2-I*y3)/rt2} ]
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toQP [xpr_] := Expand[xpr /.
{y1->(q1+I*q2) /rt2, y2->( p2+I*pl)/rt2,
y3->(p1+Ixp2)/rt2, y4->(-q2-I*ql)/rt2} ]
Also define the inner product <,> and its corresponding norm specifically with respect to
the y’s.
yip = USpInner[{yl,y2,y3,y4}];
ynrm = USpNorm[{y1l,y2,y3,y4}];

To determine the higher-order basis functions, we define the function phisum[j1, 52,12, 2]
[7,m,l, ], which forms a higher-order basis function ¢ in terms of a direct product of lower-
order basis functions. We turn off the Clebsch-Gordan warning messages because non-physical
Clebsch-Gordan coefficients are already defined to be zero and hence do no harm when they
arise in the sum over m2 in phisum.

phisum[j1_,j2_,12_,mu2_J[j_,m_,1_,mu_] :=
Sum[ClebschGordan[{j1,m-m2},{j2,m2},{j,m}]*
phil[jl,m-m2,1-12,mu-mu2] * phi[j2,m2,12,mu2],
{m2,-j2,j2,1}]

0ff [ClebschGordan: :phy,ClebschGordan: :tri]

We can use phisum[] to obtain the highest-spin basis polynomial that carries a given repre-
sentation, and then use the lowering operator to obtain the remaining basis elements. Here
we define the functions lower [] and LowerAl1[] to perform these chores.

lower[j_,m_,f_] := toY[1/cd[j,m] Adn[toQP[£f]]]

LowerAl1l[j_,1_,mu_] :=
(philj,#-1,1,mu] = lower[j,#, philj,#,1,mull)& /@
Range[j,-j+1,-1]

The last function we define, phirep[j,l,u], simply returns all of the [-th degree basis func-
tions that carry the representation labeled by spin j and index pu.

phirep[j_,1_,mu_] := phil[j,#,1,mul& /@ Rangelj,-j,-1]

B Order 1

Begin by defining the basis functions of degree one.
O Phi[1/2,1,1] (j =1/2,l=1, u=1)
phil1/2, 1/2,1,1] = yi;

phil1/2,-1/2,1,1] = y2;
O Phi[1/2,1,0]
phil1/2, 1/2,1,0] = y3;
phil1/2,-1/2,1,0] = y4;
B Order 2
Now build the basis functions of degree two.
O Phi[1,2,2]

Define phi[1,1,2,2] using phi[1/2,1/2,1,1] ® phi[1/2,1/2,1,1], and divide by
Sqrt [2] to normalize the result.

phi[1,1,2,2] = phisum[1/2,1/2,1,1][1,1,2,2]/Sqrt[2]
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Now use the lowering operator to determine the other basis functions in this copy of spin-1,

LowerAll[1,2,2];
phirep[1,2,2] // Together

2 2

Sart [2] Sart [2]

and make sure they are properly normalized.

ynrm /@ %
{1, 1, 1}
O Phi[1,2,1]

phi[1,1,2,1] = phisum[1/2,1/2,1,0][1,1,2,1]
yl y3

LowerAll1([1,2,1];
phirep[1,2,1] // Together

Sqrt[2] y2 y3 + Sqrt[2] y1 y4

ynrm /@ %
{1, 1, 1}
O Phi[1,2,0]
phi[1,1,2,0] = phisum[1/2,1/2,1,0]1[1,1,2,0]/Sqrt [2]

LowerAll1[1,2,0];
phirep[1,2,0] // Together

2 2
y3 y4
{==- > ¥y3 y4, —mmm- by
Sart[2] Sart[2]
ynrm /@ %
{1, 1, 1}

O Phi[0,2,1]
phi[0,0,2,1] = phisum([1/2,1/2,1,0]1[0,0,2,1] // Together

-(Sqrt[2] y2 y3) + Sqrtl[2] y1 y4
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ynrm [%]

1

B Order 3
O Phi[3/2,3,3]

phi[3/2,3/2,3,3] =
phisum(1,1/2,1,1][3/2,3/2,3,3]/Sqrt [3]

3

Sqrt [6]

LowerAl1([3/2,3,3];
phirep[3/2,3,3] // Together

Sqrt[6] Sqrt[2] Sqrt[2] Sqrt[6]
ynrm /@ %
{1, 1, 1, 1}

0 Phi[3/2,3,2]

phi[3/2,3/2,3,2] =
phisum([1,1/2,1,0]1[3/2,3/2,3,2]

Sqrt [2]

LowerAl1[3/2,3,2];
phirep[3/2,3,2] // Together

2

ynrm /@ %
{1, 1, 1, 1}

O Phi[3/2,3,1]

phi[3/2,3/2,3,1] =
phisum(1,1/2,1,11[3/2,3/2,3,1]
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LowerAl1[3/2,3,1];
phirep[3/2,3,1] // Together

2 2
y1l y3 Sqrt[6] y2 y3 + 2 Sqrt[6] yl1 y3 y4
{ _______ , TTTTTTTTTTTTT T T T T T T TTTTTTTTTTTTT >
Sqrt[2] 6
2 2
2 Sqrt[6] y2 y3 y4 + Sqrt[6] yl y4 y2 y4
----------------------------------- , ———-——-}
6 Sqrt[2]
ynrm /@ %
{1, 1, 1, 13}
O Phi[3/2,3,0]
phi[3/2,3/2,3,0] =
phisum(1,1/2,1,0][3/2,3/2,3,0]/Sqrt[3]
3
y3
Sqrt [6]

LowerAl1([3/2,3,0];
phirep[3/2,3,0] // Together

Sqrt[6] Sqrt[2] Sqrtl[2] Sqrtl6]
ynrm /@ %
{1, 1, 1, 1}

O Phi[1/2,3,2]

phil1/2,1/2,3,2] =
phisum([1,1/2,1,0][1/2,1/2,3,2]

Sqrt [3] Sart [3]

LowerAll[1/2,3,2];
phirep[1/2,3,2] // Together
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2
-(Sqrt[3] yi y2 y3) + Sqrt[3] y1 y4
- ,
3
2
-(Sqrt[3] y2 y3) + Sqrtl3] y1 y2 y4
____________________________________ }
3
ynrm /@ %
{1, 1}
O Phi[1/2,3,1]
phil1/2,1/2,3,1] =
phisum(1,1/2,1,1]1[1/2,1/2,3,1]
2
y2 y3 vyl y3 y4
Sqrt[3]  Sqrt[3]
LowerAl1[1/2,3,1];
phirep[1/2,3,1] // Together
2
Sqrt[3] y2 y3 - Sqrtl[3] yl1 y3 y4
- )
3
2
Sqrt[3] y2 y3 y4 - Sart[3] yl1 y4
_________________________________ }
3
ynrm /@ %
{1, 1}
M Order 4
O Phi[2,4,4]
phi[2,2,4,4] = phisum([3/2,1/2,1,1]1[2,2,4,4]/2
4
y1
2 Sqrt[6]
LowerAll[2,4,4];
phirep[2,4,4] // Together
4 3 2 2 3 4
yi yt y2 yt y2 yiy2 y2
{-—-- s T , TTTTTo y T y —mmm————= }
2 Sqrt[6] Sqrt([6] 2 Sqrt[6] 2 Sqrt[6]

ynrm /@ %

{1, 1, 1, 1, 1}
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O Phi[2,4,3]
phi[2,2,4,3] = phisum([3/2,1/2,1,0]([2,2,4,3]
3
yi y3
Sqrt [6]
LowerAll[2,4,3];
phirep[2,4,3] // Together
3 2 3
yl y3 3 Sqrtl[6] yi1 y2 y3 + Sqrtl[6] y1 y4
{ _______ , TTTTTTTTTTT T T T T T T TTTTTTTTTTTTTTTTTT 5
Sqrt [6] 12
2 2

2
3 2 3
Sqrt[6] y2 y3 + 3 Sqrt[6] y1 y2 y4 y2 y4
------------------------------------ , ————---}
12 Sqrt[6]
ynrm /@ %
{1, 1, 1, 1, 13
O Phi[2,4,2]
phil[2,2,4,2] = phisum([3/2,1/2,1,0]1[2,2,4,2]/Sqrt[2]
2 2
yi y3
2
LowerAll[2,4,2];
phirep[2,4,2] // Together
2 2 2 2
yl y3 yl y2 y3 +yl1 y3 y4
{ _______ , TTTTTTTTTTTTTT T T T T >
2 2
2 2
(Sqrtl6] y2 y3 + 4 Sqrtl6] yil y2 y3 y4 +
2 2
2 2 y2 y3 y4 + yl y2 y4
Sqrt[6] y1 y4 ) / 12, ———————------mmmmmmoo ,
2
2 2
y2 y4
------- }
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ynrm /@ %
{1, 1, 1, 1, 1}

0 Phi[2,4,1]
phi[2,2,4,1] = phisum([3/2,1/2,1,1]1[2,2,4,1]

LowerAll[2,4,1];
phirep[2,4,1] // Together

3 3 2
y1l y3 Sqrt[6] y2 y3 + 3 Sqrtl6] y1 y3 y4

12 Sqrt [6]
ynrm /@ %
{1, 1, 1, 1, 1}

[ Phi[2,4,0]
phi[2,2,4,0] = phisum[3/2,1/2,1,0][2,2,4,0]/2

4
y3
2 Sqrt[6]
LowerAll[2,4,0];
phirep[2,4,0] // Together
4 3 2 2 3 4

y3 y3 y4 y3 y4 y3y4 y4

{----- s s s T y T , —mmm————- }
2 Sqrt[6] Sqrtl[6] 2 Sqrt[6] 2 Sqrt([6]

ynrm /@ %

{1, 1, 1, 1, 1}

0 Phi[l,4,3]
phi[1,1,4,3] = phisum[3/2,1/2,1,0][1,1,4,3]

2 3
-(y1 y2 y3) yl y4

2 Sqrt[2] 2 Sqrt[2]
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LowerAll[1,4,3];
phirep[1,4,3] // Together

2 3
-(Sgrt[2] y1 y2 y3) + Sart[2] y1 y4

O Phi[1,4,2
phi[1,1,4,2] = phisum[3/2,1/2,1,01[1,1,4,2] Sqrt[3/2] // XA

2 2
-(y1y2y3) yi1 y3y4

LowerAll1([1,4,2];
phirep[1,4,2] // Together

2 2
-(y1 y2 y3) +y1 y3 y4

ynrm /@ %
{1, 1, 1}
O Phi[1,4,1]
phi[1,1,4,1] = phisum(3/2,1/2,1,11[1,1,4,1]

3 2
y2 y3 yl y3 y4

2 Sqrt[2] 2 Sqrt[2]
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LowerAll[1,4,1];
phirep[1,4,1] // Together
3 2
Sqrt[2] y2 y3 - Sqrtl[2] y1 y3 y4
- ,
4
2 2
y2 y3 y4 - yly3yd
2
2 3
Sqrt[2] y2 y3 y4 - Sqrt[2] y1 y4
__________________________________ }
4
ynrm /@ %
{1, 1, 1}
O Phi[0,4,2]

phi[0,0,4,2] = phisum([1,1,2,0][0,0,4,2]

2 2 2 2
y2 y3 yly2y3ys yl y4
_____________________ oo
2 Sqrt[3] Sart [3] 2 Sqrt[3]

Together [%]
2 2

(Sqrt[3] y2 y3 - 2 Sqrtl[3] y1 y2 y3 y4 +

2 2
Sart[3] y1 y4) / 6

ynrm [%]

1

B Order 5
O Phi[5/2,5,5]
phil5/2,5/2,5,5] = phisum([3/2,1,2,2][5/2,5/2,5,5]/Sqrt[10]

5

2 Sqrt[30]

LowerAl1([5/2,5,5];
phirep[5/2,5,5] // Together
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5 4 3 2 2 3
y1 yl y2 yl y2 yl y2
{ __________ sy TTTTTTTTT s TTTTTTTTT y TTTTTTTTT 3
2 Sqrt[30] 2 Sqrt[6] 2 Sqrt[3] 2 Sqrt[3]
4 5
yl y2 y2

2 Sqrt[G]’ 2 Sqrt[30]
ynrm /@ %,
{1, 1, 1, 1, 1, 1}
O Phi[5/2,5,4]
phi[5/2,56/2,5,4] = phisum[3/2,1,2,1][5/2,5/2,5,4]1/2

2 Sqrt[6]

LowerAll1[5/2,5,4];
phirep[5/2,5,4] // Together

4 3 4
yl y3 4 Sqrt[30] y1 y2 y3 + Sqrtl[30] y1 y4

3 2 2
2 Sqrt[15] y1 y2 y3 + 3 Sqrt[15] y1 y2 y4

30
4 3 4
Sqrt[30] y2 y3 + 4 Sqrt[30] y1 y2 y4 y2 y4
60 ’ 2 Sqrt[6]}
ynrm /@ %
{1, 1, 1, 1, 1, 1}
O Phi[5/2,5,3]

phi[5/2,5/2,5,3] = phisum[3/2,1,2,11[5/2,5/2,5,3]1/Sqrt[6]

3 2

yl y3

2 Sqrt[3]
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LowerAl1[5/2,5,3];
phirep[5/2,5,3] // Together

3 2
yi y3
{ _________ B
2 Sqrt[3]
2 2 3
3 Sqrt[15] y1 y2 y3 + 2 Sqrtl[15] y1 y3 y4
30
2 2 2
(8 Sqrt[30] y1 y2 y3 + 6 Sqrt[30] y1 y2 y3 y4 +
3 2
Sqrt[30] y1 y4 ) / 60,
3 2 2
(Sqrt[30] y2 y3 + 6 Sqrt[30] y1 y2 y3 y4 +
2 2
3 Sqrt[30] y1 y2 y4 ) / 60,
3 2 2
2 Sqrt[15] y2 y3 y4 + 3 Sqrtl[15] y1 y2 y4
30
3 2
y2 y4
--------- }
2 Sqrt[3]
ynrm /@ %

{1, 1, 1,1, 1, 1}

0 Phi[5/2,5,2]
phi[5/2,5/2,5,2] = phisum[3/2,1,2,1][5/2,5/2,5,2]/Sqrt [6]

2 Sqrt[3]

LowerAl1([5/2,5,2];
phirep[5/2,5,2] // Together

2 Sqrt[3]
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3 2 2
2 Sqrt[15] y1 y2 y3 + 3 Sqrt[15] y1 y3 y4

(Sqrt[30] y2 y3 + 6 Sqrt[30] yl1 y2 y3 y4 +

2 2
3 Sqrt[30] y1 y3 y4 ) / 60,

2 2 2
(8 Sqrt[30] y2 y3 y4 + 6 Sqrt[30] yi1 y2 y3 y4 +

2 3
Sqrt[30] y1 y4 ) / 60,

2 2 3
3 Sqrt[15] y2 y3 y4 + 2 Sqrtl[15] y1 y2 y4

2 Sqrt[3]
ynrm /@ %
{1, 1,1, 1, 1, 1}
O Phi[5/2,5,1]
phi[5/2,5/2,5,1] = phisum[3/2,1,2,11[5/2,5/2,5,11/2

2 Sqrt[6]

LowerAl1([5/2,5,1];
phirep[5/2,5,1] // Together

4 4 3
y1 y3 Sqrt[30] y2 y3 + 4 Sqrt[30] y1 y3 y4
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4 Sqrt[30] y2 y3 y43 + Sqrt[30] yi y44 y2 y44
60 2 Sqrt[6]
ynrm /@ %
{1, 1, 1, 1, 1, 1}
O Phi[5/2,5,0]
phi[5/2,56/2,5,0] = phisum[3/2,1,2,0][5/2,5/2,5,0]/Sqrt[10]

5

2 Sqrt[30]

LowerAl1([5/2,5,0];
phirep[5/2,5,0] // Together

5 4 3 2 2 3
y3 y3 y4 y3 y4 y3 vy4
{ __________ y TTTTTTTTT sy TTTTTTTTT y T TTTTTTTT b
2 Sqrt[30] 2 Sqrt[6] 2 Sqrt[3] 2 Sqrt[3]
4 5
y3 y4 y4

2 Sqrt[G]’ 2 Sqrt[30]
ynrm /@ %
{1, 1, 1, 1, 1, 1}
O Phi[3/2,5,4]

phi[3/2,3/2,5,4] =
phisum([3/2,1,2,11[3/2,3/2,5,4] Sqrt[2/3] // XA

Sqrt [30] Sqrt [30]

LowerAl1([3/2,5,4];
phirep[3/2,5,4] // Together

3 4
-(Sqrt[30] y1 y2 y3) + Sqrt[30] y1 y4
+------—---------"--— ,
30
2 2 3
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4 3
-(8qrt[30] y2 y3) + Sqrt[30] y1 y2 y4
_______________________________________ }
30
ynrm /@ %
{1, 1, 1, 1}
O Phi[3/2,5,3]
phi[3/2,3/2,5,3] =
phisum([3/2,1,2,11[3/2,3/2,5,3] Sqrt[6] // XA
2 2 3
yl y2y3 yl y3 y4
=(m==m—- ) A o
Sqrt[10] Sqrt[10]

LowerAl1[3/2,5,3];
phirep[3/2,5,3] // Together

2 2 3
-(Sqrt[10] y1 y2 y3 ) + Sqrt[10] y1 y3 y4

(-2 Sqrt[30] y1 y2 y3 + Sqrt[30] y1 y2 y3 y4 +

3 2
Sqrt[30] y1 y4 ) / 30,

3 2 2
(-(Sqrt[30] y2 y3 ) - Sqrt[30] y1 y2 y3 y4 +

2 2
2 Sqrt[30] y1 y2 y4 ) / 30,

- (Sqrt [10] y23 v3 y4) + Sqrt[10] yi y22 y42
10 ’
ynrm /@ %
{1, 1, 1, 1}
O Phi[3/2,5,2]
phi[3/2,3/2,5,2] =

phisum([3/2,1,2,11[3/2,3/2,5,2] Sqrt[6] // XA

Sqrt [10] Sqrt [10]

LowerAl1[3/2,5,2];
phirep[3/2,5,2] // Together
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3 2 2
Sqrt[10] y1 y2 y3 - Sqrt[10] y1 y3 y4

(Sqrt[30] y2 y3 + Sqrt[30] y1 y2 y3 y4 -

2 2
2 Sqrt[30] y1 y3 y4 ) / 30,

2 2 2
(2 Sqrtl[30] y2 y3 y4 - Sqrtl[30] yl1 y2 y3 y4 -

2 3
Sqrt[30] y1 y4 ) / 30,

2 2 3
Sqrt[10] y2 y3 y4 - Sqrt[10] yi1 y2 y4

ynrm /@ %
{1, 1, 1, 1}
O Phi[3/2,5,1]

phi[3/2,3/2,5,1] =
phisum[3/2,1,2,1]1[3/2,3/2,5,1] Sqrt[2/3] // XA

Sqrt[30]  Sqrt[30]

LowerAl1[3/2,5,1];
phirep[3/2,5,1] // Together

4 3
Sqrt[30] y2 y3 - Sqrt[30] y1 y3 y4

Sqrt[10] y2 y3 y4 - Sqrt[10] y1 y3 y4

Sqrt[30] y2 y3 y4 - Sqrt[30] y1 y4
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ynrm /@ %
{1, 1, 1, 1}
U Phi[1/2,5,3]
phil1/2,1/2,5,3] =
phisum([3/2,1,2,11[1/2,1/2,5,3] Sqrt[3/2] // XA
2 2 2 3 2

-(yty2 y3) y1 y2y3y4 yl y4

2 Sqrt[6] Sqrt [6] 2 Sqrt[6]

LowerAll[1/2,5,3];
phirep[1/2,5,3] // Together

2 2 2
{(-(Sqrt[6] y1 y2 y3 ) + 2 Sqrt[6] y1 y2 y3 y4 -

3 2
Sqrtl6]l y1 y4 ) / 12,

3 2 2
(-(Sqrt[6] y2 y3 ) + 2 Sqrtl6] y1 y2 y3 y4 -

2 2
Sqrt[6] y1 y2 y4 ) / 12}

ynrm /@ %
{1, 1}
O Phi[1/2,5,2]
phil1/2,1/2,5,2] =
phisum[3/2,1,2,11[1/2,1/2,5,2] Sqrt[3/2] // XA
2 3 2 2 2

-(y2 y3) yl y2 y3 y4 yl1 y3 y4

2 Sqrt[6] Sqrt [6] 2 Sqrt[6]
LowerAll[1/2,5,2];
phirep[1/2,5,2] // Together

2 3 2
{(-(Sqrt[6] y2 y3 ) + 2 Sqrt[6] y1 y2 y3 y4 -

2 2
Sqrt[6] y1 y3 y4 ) / 12,

2 2 2

(-(Sqrtl6] y2 y3 y4) + 2 Sqrtl6] yi y2 y3 y4

2 3
Sqrtl[6] y1 y4 ) / 12}

ynrm /@ %
{1, 1}
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‘ GramXct_SU2.ma ‘

Continuum-Limit Gram Eigenvalues for
Two Degrees of Freedom using SU(2)

This Mathematica notebook shows how to compute the continuum-limit Gram eigenvalues
for the case n = 2 when we include all linear symplectic transformations in SU(2).

B Definitions and Functions

First import the packages that define the inner product <,> and the basis functions
©(j,m;l, ). Then define the inner product <,> specifically with respect to the y’s, and
define the ¢’s in terms of the y’s.

<<USp.m
<<SU2phi.m

yip = USpInner([{yl,y2,y3,y4}];

ql = (y1 + I y4)/Sqrt[2];
g2 = (y1 - I y4)/(I Sqrt[2]);

Now define the function Nc and the g-monomials Q1k:

Nc[l_,c_] := If[ec==1/2, 1, 2]
Q1k[1_,k_] := q1°(1-k) g2°k/Sqrt[(1-k)! k!]

The following function returns the continuum-limit Gram eigenvalues:

GramEVA[1_,j_,mu_] := 1/((1+1)*(2j+1)) *
Sum[Nc[1l,c] Abs[ yip[ philj,mu-1/2,1,mul], Qlk[1l,c] 1 172,
{c,0,Floor[1/2]1}]

B Gram Eigenvalues
O Eigenvalues for order 1
GramEV4([1, 1/2, 0]

1

4

U Eigenvalues for order 2
GramEV4[2, 1, 1]

1

18
GramEV4[2, 1, 0]

1

GramEV4[2, 0, 1]

1

6
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O Eigenvalues for order 3
GramEV4([3, 3/2, 1]
1

48
GramEV4[3, 3/2, 0]
1

16
GramEV4[3, 1/2, 1]
1

12

U Eigenvalues for order 4
GramEV4[4, 2, 2]

GramEV4[4, 2, 0]

1

25
GramEV4[4, 1, 2]

1

30
GramEV4[4, 1, 1]

1

20
GramEV4[4, 0, 2]
1

15

O Eigenvalues for order 5
GramEV4([5, 5/2, 2]
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GramEV4[5,

GramEV4[5,
1

36

GramEV4 [5,
1

60

GramEV4 [5,
1

30

GramEV4 [5,
1

24

5/2,

5/2,

3/2,

3/2,

1/2,

1]

0]

2]

1]

2]

D. T. ABELL
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‘ GramXct_U2.ma ‘

Continuum-Limit Gram Eigenvalues for
Two Degrees of Freedom using U(2)

This Mathematica notebook shows how to compute the continuum-limit Gram eigenvalues
for the case n = 2 when we include all linear symplectic transformations in U(2).

B Definitions and Functions

First import the packages that define the inner product <,> and the basis functions
©(j,m; 1, w). Then define the y’s, what :b[0]: does to the y’s, and the inner product <,>
specifically with respect to the y’s.

<<USp.m
<<SU2phi.m

ys = {y1,y2,y3,y4};
bys = {-y3,-y4,y1,y2};
ip = USpInner[ys];

Also define the operator Rop = exp(—6/2:b[0]:) according to its action on the y’s, and define
its matrix elements R.

Rop[th_,f_] := £ /.
Thread[ys -> ys Cos[th/2] - bys Sin[th/2]]

Rlth_,1_,j_,mu_,nu_] :=
ip[ philj,j,1,mul, Roplth, philj,j,1,nul] ]

Now define a function Rmat that returns the matrix representation for the operator Rop.
The obvious way to do this defines Rmat using Table in a straightforward manner. To take
advantage of the symmetry, however, we define Rsym; it looks messier, but computes more
quickly.

Rmat[th_,1_,j_] :=
Table[R[th,1,j,mu,nu],
{mu,1/2-j,1/2+j,1},{nu,1/2-j,1/2+j,1}]

Rsym[th_,1_Integer,j_] :=
Module[{rj,12,0s,mu,nu,re,ret},
rj=Table[0,{2j+1},{2j+1}];
12=1/2;
os=1-(12-3);
For [mu=12-j, mu<=12+j, mu++,
rj[[mutos,mutos]] = R[th,1,j,mu,mul;
For [nu=mu+1, nu<=12+j, nut+,
re = R[th,1,j,mu,nul;
rj[[mutos,nutos]] = re;
rj[[nutos,mutos]] = re /. th->(-th);
]
1
rjl /; IntegerQ[l/2-j]

We need two more tools: a diagonal matrix containing the SU(2) Gram eigenvalues, and an
integral over the U(1) part of U(2).
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(* see below for the gramev4[l,j,mu] *)
Lambda[l_,j_] := DiagonalMatrix[
Table[gramev4[l,j,mul, {mu,1/2-j,1/2+j,1}] ]

int[f_] := 1/(2 Pi) * Integrate[f,{th,0,2 Pi}]

We can now define functions that return the Gram matrix and its eigenvalues. Here we
actually define these functions just for the block labeled j.

Gram4ul[l_,j_] :=
Module [{rj,rjm},
rj = Rmat[th,1,j];
rjm = rj /. th->(-th);
int [rj.Lambdall,j].rjm] ]

GramEV4u[l_,j_] := Eigenvalues[Gram4ul[l, j]]

As with Rmat, we can use the known symmetry of the Gram matrix to speed up the calcula-
tion:
GramSym4u[l_Integer,j_] :=
Module[{rj,rjm,kj,gm,12,0s,mu,nu,ge},
rj = Rsym[th,1,j];
rjm = rj /. th->(-th);
kj = rj.Lambdall,j].rjm;
gm=Table[0,{2j+1},{2j+1}];
12=1/2;
os=1-(12-3);
For [mu=12-j, mu<=12+j, mu++,
gm[ [mutos,mutos]] = int[kj[[mutos,mu+os]]];
For [nu=mu+1, nu<=12+j, nut+,
ge = int[kj[[mu+os,nu+tos]]];
gm[ [mutos,nutos]] = ge;
gn [ [nu+os,mutos]] = ge;
]
1;
gm] /; IntegerQ[1/2-j]

GramSymEV4u[l_,j_] := Eigenvalues[GramSym4u[1,j]]

O Gram eigenvalues from the SU(2) calculation
Here we list all of the SU(2) Gram eigenvalues, gramev4[j,l,u], for I <5:

gramev4[1l, 1/2, 1] = 1/4;
gramev4[1l, 1/2, 0] = 1/4;
gramev4[2, 1, 2] = 1/9;
gramev4[2, 1, 1] = 1/18;
gramev4a[2, 1, 0] = 1/9;
gramev4[2, 0, 1] = 1/6;

gramev4[3, 3/2, 3] = 1/16;
gramev4[3, 3/2, 2] = 1/48;
gramev4[3, 3/2, 1] = 1/48;
gramev4[3, 3/2, 0] = 1/16;
gramev4[3, 1/2, 2] = 1/12;
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gramev4[3, 1/2, 1] = 1/12;

gramev4[4, 2, 4] = 1/25;
gramev4[4, 2, 3] = 1/100;
gramev4[4, 2, 2] = 1/150;
gramev4[4, 2, 1] = 1/100;
gramev4[4, 2, 0] = 1/25;
gramev4[4, 1, 3] = 1/20;
gramev4[4, 1, 2] = 1/30;
gramev4[4, 1, 1] = 1/20;
gramev4[4, 0, 2] = 1/15;

gramev4[5, 5/2, 5] = 1/36;
gramev4[5, 5/2, 4] = 1/180;
gramev4[5, 5/2, 3] = 1/360;
gramev4[5, 5/2, 2] = 1/360;
gramev4[5, 5/2, 1] = 1/180;
gramev4[5, 5/2, 0] = 1/36;
gramev4[5, 3/2, 4] = 1/30;
gramev4[5, 3/2, 3] = 1/60;
gramev4[5, 3/2, 2] = 1/60;
gramev4[5, 3/2, 1] = 1/30;
gramev4[5, 1/2, 3] = 1/24;
gramev4[5, 1/2, 2] = 1/24;

B Gram Eigenvalues for U(2)
0 Order 1
GramSymEV4u[1,1/2]

{-, -}
4 4

O Order 2
GramSymEV4u[2,1]
{-—-, -, -}
12 12 9
GramSymEV4u[2,0]
1
{-}
6

O Order 3
GramSymEV4u[3,3/2]

32 32 96 96
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GramSymEV4u[3,1/2]

-, -}
12 12

1 Order 4
GramSymEV4u [4, 2]

1 1 1 1 19
-, —, —, —, —}
80 80 40 40 600

GramSymEV4u [4,1]
{--, —-, --}
24 24 20
GramSymEV4u [4, 0]
{--}
15
] Order 5
GramSymEV4u [5,5/2]
1 1 7 7 3 3

{___’ ___’ ___’ ___’ ___’ ___}

192 192 576 576 160 160
GramSymEV4u[5,3/2]

1 1 7 7

{-- - - -}

48 48 240 240

GramSymEV4u[5,1/2]

D. T. ABELL
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‘ GramXct_SU3.ma ‘

Continuum-Limit Gram Eigenvalues for
Three Degrees of Freedom using SU(3)

This Mathematica notebook shows how to compute the continuum-limit Gram eigenvalues
for the case n = 3 when we include all linear symplectic transformations in SU(3).

B Definitions

First import the packages that define the SU(3) basis functions psi[] and the weights for
the irreducible representations of SU(3).

<<sp6tools.m
<<SU3wts.m

Now list representative elements for each of the equivalence classes of (Q’s under permutation
of ¢g-indices. Also list the order of each equivalence class.

Qcl[1] = {q1};
Qc[2] = {q172/Sqrt[2], ql q2};
Qc[3] = {q173/8qrt[3!], q172 q2/Sqrt[2], ql g2 q3};
Qcl[4] = {q174/Sqrt[4!], q173 q2/Sqrt[3!], q172 q272/2,
ql”2 g2 q3/Sqrt[2]};
Qc[5] = {q1°5/Sqrt[5!]1, q1°4 q2/Sqrt[4!],
ql1°3 q272/8qrt[3! 2], q1°3 g2 g3/8qrt[3!],
ql~2 g2°2 gq3/2};
Qcl6] = {g1°6/Sqrt[6!], q1°5 q2/Sqrt[5!],
ql~4 q2°2/Sqrt[4! 2], q1°4 g2 q3/Sqrt[4!],
q1"3 q273/(3!), q1°3 q2°2 q3/Sqrt[3! 2!1,
ql"2 g2°2 9372/Sqrt[2 2 2]};
Qc[7] = {q1°7/Sqrt[7!], q1"6 q2/Sqrt[6!],
ql”5 g9272/Sqrt[5! 2], q1°5 92 q3/Sqrt[5!],
ql~4 q2°3/Sqrt[4! 3!]1, q174 9272 q3/Sqrt[4! 2!],
q173 9273 q3/(3!), q173 q2°2 g3°2/Sqrt[3! 2 21};

Nc[1] = {3};
Nc[2] = {3,3};
Nc[3] = {3,6,1};
Nc[4] = {3,6,3,3};

Nc[5] = {3,6,6,3,3};
Ncl6] = {3,6,6,3,3,6,1};
Ne[7] = {3,6,6,3,6,6,3,3};

The following function returns the values of k2 and k3—the exponents of q2 and g3 for a
given Q:

K23[Q_] := Exponent[Q,#]& /@ {q2,93}

The following two functions return the ranges of the eigenvalues I3 and Y for a ) defined by
the values k2 and k3:

I3range[k2_,k3_] := Range[-(k2+k3)/2, (k2+k3)/2,1]
Yrange[1_,k2_,k3_] :=
Range [-(21-k2-k3) /3, (21-k2-k3) /3, If [k2==0==k3,4/3,2/3]]
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The following two functions together compute the continuum-limit Gram eigenvalues:

nusum[1_,j1_,j2_,Q_] :=
Module [k2,k3,1i3s,ys,1i3ys, imax},
k2,k3}=K23[Q] ;
i3s = I3rangel[k2,k3];
ys = Yrange[1l,k2,k3];
ii3ys = Select[SU3ii3y[j1,j2],MemberQ[i3s,#[[2]1]1]1&];
ii3ys = Select[ii3ys,MemberQlys,#[[3]111&];
(* imax = Max[i3s];
ii3ys = Select[ii3ys,#[[1]]<=imax&]; *)
Plus Q@
(zip[psil[j1,j2, (Sequence @@ #),1],toZ[Q]]"2& /@ ii3ys)]

GramEV6[1_,j1_,j2_] := 2/((1+1) (1+2)SU3dim[j1,j2]) *
Plus @@ (Nc[1l*(nusum(1,j1,j2,#]1& /@ Qc[1]))
B Gram Eigenvalues
U Eigenvalues for order 1
GramEV6[1,1,0]

1

6

U Eigenvalues for order 2
GramEV6[2,2,0]

1

24
GramEV6[2,1,1]

5

96
GramEV6([2,0,0]

1

12
O Eigenvalues for order 3
GramEV6[3,3,0]

1

80

GramEV6[3,2,1]
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GramEV6[3,1,0]

1

32

U Eigenvalues for order 4

GramEV6[4,4,0]

GramEV6[4,3,1]

7

960
GramEV6[4,2,2]

19

2160
GramEV6[4,2,0]

1

80

GramEV6([4,1,1]

GramEV6[4,0,0]

1

48

O Eigenvalues for order 5

GramEV6[5,5,0]

GramEV6([5,4,1]

1

336
GramEV6[5,3,2]

17

4032

279
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GramEV6[5,3,0]

GramEV6[5,1,0]

1

96

O Eigenvalues for order 6

GramEV6[6,6,0]

1

1792
GramEV6[6,5,1]

9

7168
GramEV6[6,4,2]

11

5376

GramEV6[6,3, 3]

GramEV6[6,3,1]

3

896
GramEV6[6,2,2]

31

8064

D. T. ABELL
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GramEV6[6,2,0]

GramEV6[6,0,0]

1

128
O Eigenvalues for order 7
GramEV6[7,7,0]

1

4608
GramEV6[7,6,1]

5

9216

GramEV6([7,5,2]

GramEV6([7,5,0]

1

1024
GramEV6([7,4,1]

5

3072
GramEV6[7,3,2]

13

6144
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GramEV6([7,3,0]
1

384
GramEV6([7,2,1]
5

1536

GramEV6([7,1,0]
7

1536

D. T. ABELL
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‘ GramXct_Uln ‘

Continuum-Limit Gram Eigenvalues for
n Degrees of Freedom using [U(1)]"

This Mathematica notebook shows how to compute the continuum-limit Gram eigenvalues
for the n-degree-of-freedom case when we include all linear symplectic transformations in the
space [U(1)]".

B Definitions and Functions

First import a couple of useful packages. Here the package Polynomial.m defines the
function NumberMonomials[], while the package ListManipulation.m defines the function
SortCount [].

<<Polynomial.m
<<ListManipulation.m

Now define a function to compute the Gram eigenvalues for the general case.

gt1Q = #>1&;

GramEvUin[1,1_7NumberQ,r_7?NumberQ] :=
Binomial[l,r]/2"1

GramEvUln[n_7gt1Q,1_List,r_List] :=
Module [deg},
deg = (Plus @@ 1);
Product [Binomial [1[[j1],r[[j11],j,n}1/
(NumberMonomials [deg,n] 2"deg)] /;
Dimensions[1]==Dimensions[r]==n}

H n=2

Here define gevs2[] to return the Gram eigenvalues specifically for the case n = 2, and
evaluate it for polynomials of degrees 1 through 5.

gevs2[1_] := Flatten[
Table [GramEvUin([2,{1-j,j},{r,s}],
{J ’O’l}’{r’O’l_j}’{S’O’j}]]

gevs2[1] // SortCount // TableForm
1

4 4

gevs2[2] // SortCount // TableForm
1

12 8
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gevs2[3] // SortCount // TableForm

1

32 12
1
16 4
3
2 4

gevs2[4] // SortCount // TableForm

1

80 16
1
0 4
3
50 s
1
20 s
3
0

192 20
1
% 4
1
6o s
1
1 s
5
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4

24
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gevs2[7] // SortCount // TableForm

1
1020 28
1
512 4
3
1024 8
1
26 8
5
1024 8
3
512 12
7
P
5
512 1
3
26 8
15
1024 8
9
512 4
5
26 8
21
1024 4
35

1024 4
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B n=3
Here define gevs3[] to return the Gram eigenvalues specifically for the case n = 3, and
evaluate it for polynomials of degrees 1 through 5.

gevs3[1_] := Flatten[
Table [GramEvUin[3,{1-j-k,j,k},{r,s,t}],
{J ,O,l},{k,o,l—j},{r,O,l—j-k},{S,O,j},{t,O,k}]]

gevs3[1] // SortCount // TableForm

1

6 6

gevs3[2] // SortCount // TableForm

1
15
1
2 s

gevs3[3] // SortCount // TableForm

1

80 38
1
0 12
3
80 6

1
20 66
1
120 24
1
s 2
1
o0 o
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gevs3[5] // SortCount // TableForm

672 102
1

33 36
1

24 a8
1

168 30
5

612 6
1

12 2
5

33 6

1792 146
1

896 48
3

1792 72
1

us s
5

1792 26
3

896 54
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1
24 13
9
1792 1
5
a9 2
3
us 6
15
1192 6
5
us 3

gevs3[7] // SortCount // TableForm

1

s608 198
1

2304 60
1

1535 96
1

1152 78
5

1608 4
1

68 o
7

1608 6
1

576 24
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2304

1152

1636

35

4608

24

60

42

24

12

24
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